精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点AC分别在∠GBE的边BGBE上,且AB=ACADBE,∠GBE的平分线与AD交于点D,连接CD

1)求证:AB=AD

2)求证:CD平分∠ACE

3)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.

【答案】1)证明见解析;(2)证明见解析;(3)∠BDC=BAC,证明见解析

【解析】

1)根据平行线的性质得到∠ADB=DBC,由角平分线的定义得到∠ABD=DBC,等量代换得到∠ABD=ADB,根据等腰三角形的判定即可得到AB=AD;(2)根据平行线的性质得到∠ADC=DCE,由①知AB=AD,等量代换得到AC=AD,根据等腰三角形的性质得到∠ACD=ADC,求得∠ACD=DCE,即可得到结论;
3)根据角平分线的定义得到∠DBC=ABC,∠DCE=ACE,由于∠BDC+DBC=DCE于是得到∠BDC+ABC=ACE,由∠BAC+ABC=ACE,于是得到∠BDC+ABC=ABC+BAC,即可得到结论.

证明:

1 AD∥BE

∠2= ∠5

AD平分∠GBE

∠2= ∠1

∠1= ∠5 , AB= AD

2 AB= AD AB= ACAC= AD

∠3= ∠ADC

AD∥BE ∠ADC= ∠4

∠3= ∠4

CD平分∠ACE

3∠BDC= ∠BAC

证明:BD平分∠ABE

∠2= ∠1 = ∠ABC

根据三角形外角性质得:

∠1+ ∠2+ ∠BAC=∠4 +∠3①

式两边除以2∠BAC=∠4-∠2

而由∠2+ ∠6 =∠4 得出∠6 =∠4 -∠2 ∠BDC=∠4 -∠2

∠BDC=∠BAC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=6cm,B=C,BC=4cm,点DAB的中点.

(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

(2)若点Q1.5cm/s的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过_____秒后,点P与点Q第一次在△ABCAC边上相遇?(在横线上直接写出答案,不必书写解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知正方形ABCD的边长为5,点E在边AB上,AE=3,延长DA至点F,使AF=AE,连结EF.将△AEF绕点A顺时针旋转0°<90°),如图2所示,连结DEBF

1)请直接写出DE的取值范围:_______________________

2)试探究DEBF的数量关系和位置关系,并说明理由;

3)当DE=4时,求四边形EBCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知下列关于的分式方程:

方程1. , 方程2. , 方程3. , ……,方程n,

1】填空:分式方程1的解为 ,分式方程2的解为

2】解分式方程3

3】根据上述方程的规律及解的特点,直接写出方程n及它的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】火车站有某公司待运的甲种货物1530,乙种货物1150,现计划用50A,B两种型号的车厢将这批货物运至北京,已知每节A型车厢的运费是0.5万元,每节B型车厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A型车厢,甲种货物25吨和乙种货物35吨可装满一节B型车厢,按此要求安排A,B两种车厢的节数,共有哪几种方案?请你设计出所有方案,并说明哪种方案的运费最少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知yx 的函数,自变量x的取值范围是x >0,下表是yx 的几组对应值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小腾根据学习一次函数的经验,利用上述表格所反映出的yx之间的变化规律,对该函数的图象与性质进行了探究.

下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(2)根据画出的函数图象,写出:

x=4对应的函数值y约为________;

该函数的一条性质:__________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:请你添加一个条件_____可以得到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强人们的节约用水意识,环节城市用水压力。某市规定,每月用水18立方米以内(含18立方米)和用水18立方米以上采取两种不同的收费标准.下图为该市的用户每月应交水费y(元)关于用水量x(立方米)的函数图像.思考并回答下列问题:

(1)求出用水量小于18立方米时,每月应交水费y(元)关于用水量x(立方米)的函数表达式.

(2)若小明家某月交水费81元,则这个月用水量为多少立方米?

查看答案和解析>>

同步练习册答案