精英家教网 > 初中数学 > 题目详情

已知:如图,AB是⊙O的直径,点C、D为圆上两点,且CB="CD" ,CF⊥AB于点F,CE⊥AD的延长线于点E.

(1)试说明:DE=BF;
(2)若∠DAB=60°,AB=6,求CF的长.

通过三角形全等求证;

解析试题分析:(1)∵ 弧CB=弧CD
∴ CB=CD,∠CAE=∠CAB         2分
又∵ CF⊥AB,CE⊥AD
∴ CE=CF               3分
∴ △CED≌△CFB           4分
∴ DE=BF              5分
(2)易得:△CAE≌△CAF            6分
易求:
考点:全等三角形的性质和判定
点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案