分析 (1)先根据SAS判定△ABC≌△AED,再根据等腰三角形三线合一的性质得出结论;
(2)根据全等三角形对应角相等,以及等腰三角形三线合一,得出∠BAC=∠EAD,∠CAF=∠DAF,即可得到∠BAF=∠EAF.
解答 证明:(1)连接AC,AD,
∵AB=AE,BC=ED,∠B=∠E,
∴△ABC≌△AED(SAS),
∴AC=AD,
又∵AF⊥CD,
∴CF=FD;
(2)∵△ABC≌△AED,
∴∠BAC=∠EAD,
∵AC=AD,AF⊥CD,
∴∠CAF=∠DAF,
∴∠BAC+∠CAF=∠EAD+∠DAF,
∴∠BAF=∠EAF,
∴AF平分∠BAE.
点评 本题考查了全等三角形的判定和性质以及等腰三角形的判定和性质,解题的关键是连接AC,AD构造全等三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 相交 | B. | 相切 | C. | 相离 | D. | 不能确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{\frac{1}{9}}$ | B. | $\sqrt{18}$ | C. | $\sqrt{8}$ | D. | $\sqrt{12}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 甲班 | B. | 乙班 | C. | 两班一样整齐 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com