精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,精英家教网点B的坐标为(-1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O.
(1)在旋转过程中,点B所经过的路径长是多少?
(2)分别求出点A1,B1的坐标;
(3)连接BB1交A1O于点M,求M的坐标.
分析:(1)在旋转过程中,点B所经过的路径长是一段弧长.但要计算弧长就要求出圆心角和半径,所以根据点B的坐标为(-1,2).可知OB=
5
,旋转的角度是90度.利用弧长公式计算即可.
(2)根据旋转的性质即可得出B1的坐标应该是(2,1),根据B1的坐标,我们不难得出∠B1OA1的余弦值应该是
5
5
,而OB1=
5
,因此OA1=5即A1的坐标是(0,5).
(3)可根据B,B1的坐标用待定系数法求出BB1所在直线的函数关系式,进而可求出M点的坐标.
解答:精英家教网解:
(1)∵点B的坐标为(-1,2),
根据勾股定理可知OB=
5

根据弧长公式可得
90π×
5
180
=
5
2
π


(2)作BD⊥AO于点D,
∵点B的坐标为(-1,2),
∴OD=1,BD=2,
∴BO=
5
,OA=5,
∴A1(0,5),B1(2,1).

(3)设BB1所在直线的解析式为y=kx+b,因为直线过B(-1,2),B1(2,1),可得:
-k+b=2
2k+b=1

解得
k=-
1
3
b=
5
3

因此BB1所在直线的解析式为y=-
1
3
x+
5
3

因此M的坐标应该是M(0,
5
3
).
点评:本题主要考查了旋转的性质,弧长的计算公式以及用待定系数法求直线解析式等知识点的应用,根据旋转的性质求出各点的左边是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案