精英家教网 > 初中数学 > 题目详情

【题目】如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DEAB,垂足为E,DE的延长线交此圆于点F.BGAD,垂足为G,BGDE于点H,DC,FB的延长线交于点P,且PC=PB.

(1)求证:BGCD;

(2)设△ABC外接圆的圆心为O,若AB=DH,OHD=80°,求∠BDE的大小.

【答案】(1)证明见解析;(2)20°或40°.

【解析】

(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;

(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:

①当点ODE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;

②当点ODE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.

(1)证明:如图1,

PC=PB,

∴∠PCB=PBC,

∵四边形ABCD内接于圆,

∴∠BAD+BCD=180°,

∵∠BCD+PCB=180°,

∴∠BAD=PCB,

∵∠BAD=BFD,

∴∠BFD=PCB=PBC,

BCDF,

DEAB,

∴∠DEB=90°,

∴∠ABC=90°,

AC是⊙O的直径,

∴∠ADC=90°,

BGAD,

∴∠AGB=90°,

∴∠ADC=AGB,

BGCD;

(2)由(1)得:BCDF,BGCD,

∴四边形BCDH是平行四边形,

BC=DH,

RtABC中,∵AB=DH,

tanACB=

∴∠ACB=60°,BAC=30°,

∴∠ADB=60°BC=AC,

DH=AC,

①当点ODE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,

∴∠AMD+ADM=90°

DEAB,

∴∠BED=90°,

∴∠BDE+ABD=90°,

∵∠AMD=ABD,

∴∠ADM=BDE,

DH=AC,

DH=OD,

∴∠DOH=OHD=80°,

∴∠ODH=20°

∵∠AOB=60°,

∴∠ADM+BDE=40°,

∴∠BDE=ADM=20°,

②当点ODE的右侧时,如图3,作直径DN,连接BN,

由①得:∠ADE=BDN=20°,ODH=20°,

∴∠BDE=BDN+ODH=40°,

综上所述,∠BDE的度数为20°40°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:

(1)未降价之前,某商场衬衫的总盈利为    元.

(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利   元,平均每天可售出   件(用含x的代数式进行表示)

(3)请列出方程,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠ABC+D=180°AC平分∠BADCEABCFAD.试说明:

1CBE≌△CDF

2AB+DF=AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD中,EAD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.

(1)求证:BGF≌△FHC;

(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.

(1)求∠BDF的大小;

(2)求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A. 一定是一次函数

B. 有的实数在数轴上找不到对应的点

C. 长为的三条线段能组成直角三角形

D. 无论为何值,点总是在第二象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为.

1)根据上图,将表格补充完整:

白纸张数

1

2

3

4

10

纸条长度

40

75

110

2)设张白纸黏合后的总长度为,则之间的关系式是

3)你认为白纸黏合起来总长度可能为吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,直线轴交于点,与轴交于点.点是抛物线上一动点,过点作直线轴于点,交直线于点.设点的横坐标为

求抛物线的解析式;

若点轴上方的抛物线上,当时,求点的坐标;

若点是点关于直线的对称点,当点落在轴上时,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将ABO绕点B顺时针旋转到A1BO1的位置,使点A的对应点A1落在直线y=x上,再将A1BO1绕点A1顺时针旋转到A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去,若点A的坐标是(0,1),则点A8的横坐标是_____

查看答案和解析>>

同步练习册答案