【题目】如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在AC、BC上,DE在AB上.
(1)求证:△ADG∽△FEB;
(2)若AG=5,AD=4,求BE的长.
【答案】(1)证明见解析;(2).
【解析】分析:(1)易证∠AGD=∠B,根据∠ADG=∠BEF=90°,即可证明△ADG∽△FEB;(2)根据勾股定理和相似三角形的性质解答即可.
本题解析:
(1)∵∠C=90°,∴∠A+∠B=90°;
∵四边形DEFG是矩形,∴∠GDE=∠FED=90°,∴∠GDA=∠FED=90°;
∴∠A+∠AGD=90°,∴∠B=∠AGD且∠GDA=∠FED=90°,∴△ADG∽△FEB. .
(2)在Rt△AGD中,∠GDA=90°由勾股定理得,AD+GD=AG, ∵AD=4,AG=5,∴GD=3,∵△ADG∽△FEB,∴ ;
∵四边形DEFG是矩形,∴FE=DG=3;∴ , ∴ BE =.
科目:初中数学 来源: 题型:
【题目】下面是我县某养鸡场2001~2006年的养鸡统计图:
(1)从图中你能得到什么信息.
(2)各年养鸡多少万只?
(3)所得(2)的数据都是准确数吗?
(4)这张图与条形统计图比较,有什么优点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《算经十书》是指汉、唐一千多年间的十部著名的数学著作,十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》.其中在《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问绳子、木条长多少尺?”,设绳子长为尺,木条长为尺,根据题意,所列方程组正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完整.
解:∵EF∥AD(已知),
∴∠2=________(________________________).
又∵∠1=∠2(____________),
∴∠1=_____(____________).
∴AB∥________(________________________).
∴∠DGA+∠BAC=180°(______________________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.
(1)求证:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB=5,AD=4,∠A=90°,DP∥AB,点C为射线DP上一点,BE平分∠ABC交线段AD于点E(不与端点A、D重合).
(1)当∠ABC为锐角,且tan∠ABC=2时,求四边形ABCD的面积;
(2)当△ABE与△BCE相似时,求线段CD的长;
(3)设CD=x,DE=y,求y关于x的函数关系式,并写出定义域.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.
(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;
(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com