精英家教网 > 初中数学 > 题目详情

如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

(1)①写出图1中的一对全等三角形;②写出图1中线段DE、AD、BE所具有的等量关系;(不必说明理由)
(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。

(1)①△ADC≌△CEB,②DE=CE+CD=AD+BE。 (2)证明△ADC≌△CEB,得CE=AD,CD=BE。
所以DE=CE-CD=AD-BE (3)DE=BE

解析试题分析:解:(1)①如图1,在△ABC中,∠ACB=90°,,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,;因为,所以,又因为AC=BC,所以△ADC≌△CEB, 
②由①的结论知△ADC≌△CEB,所以CD=BE,AD=CE,所以
DE=CE+CD=AD+BE。 
(2)∵AD⊥MN于D,BE⊥MN于E。
∴∠ADC=∠BEC=∠ACB=90°, 
∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°。
∴∠CAD=∠BCE。 
在△ADC和△CEB中

∴△ADC≌△CEB。   
∴CE=AD,CD=BE。
∴DE=CE-CD=AD-BE。 
(3)当MN旋转到图3的位置时,AD、DE、根据旋转的特征,结合(1)、(2)DE、AD、BE所满足的等量关系是DE=BE(或AD=,BE=AD+DE等)。   
考点:全等三角形,旋转
点评:本题考查全等三角形,解答本题的关键是掌握全等三角形的判定方法,会证明两个三角形全等,熟悉旋转的特征,会利用旋转的特征来解答本题

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)当∠BAC=90°时,求证:
PE
CE
=
1
2

(3)如图2,当PC是圆O的切线,E为AD中点,BC=8,求AD的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说精英家教网明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>
BC2+CD2

(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DE
BD
.如图2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
(1)求证:∠AOC=90°+
12
∠ABC;
(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案