如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF。试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
科目:初中数学 来源:云南昆明市 2017年九年级数学中考模拟试卷(含答案) 题型:单选题
丽华根据演讲比赛中九位评委所给的分数作了如下表格:
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A. 平均数 B. 众数 C. 方差 D. 中位数
查看答案和解析>>
科目:初中数学 来源:重庆合川区清平中学 2017年九年级数学中考模拟试卷(含答案) 题型:单选题
若方程(m-1)xm2+1-(m+1)x-2=0是一元二次方程,则m的值为 ( )
A. 0 B. ±1 C. 1 D. -1
查看答案和解析>>
科目:初中数学 来源:九年级数学(浙教版)上册同步练习:1.4 二次函数的应用(三) 题型:解答题
如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.
查看答案和解析>>
科目:初中数学 来源:广西南宁市 2017年九年级数学中考模拟试卷(含答案) 题型:解答题
如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中数学 来源:江苏省2016-2017学年八年级5月单元测试数学试卷 题型:解答题
如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com