精英家教网 > 初中数学 > 题目详情
(2008•岳阳)如图,小鸟的妈妈在地面D处寻找到食物,准备飞到大树的顶端B处给非常饥饿的小鸟喂食,途中经过小树树顶C处,已知小树高为4米,大树与小树之间的距离为9米,已知tan∠BDA=,问小鸟妈妈从D处飞到B处至少要飞行多少米?(D、C、B三点共线)

【答案】分析:已知tan∠BDA=,小树高为4米,即CE=4米,就可以求出ED的长,根据CE∥AB,得到就可以求出AB,在直角△ABD中,根据勾股定理就可以得到BD的长.
解答:解法一:∵CE⊥AD,BA⊥AD,
∴△BAD和△CED都是Rt△,
又tan∠BDA=

又CE=4米,
∴ED=3米,
又AD=AE+ED=12米,CE⊥AD,AB⊥AD,
∴CE∥AB,

又CE=4米,ED=3米,AE=9米,
∴AB=16米,
米.
答:小鸟妈妈至少飞行20米;

解法二:∵CE⊥AD,
∴△CED为Rt△,
由tan∠BDA=,CE=4,
∴ED=3米,

又AB⊥AD,∴CE∥AB,
米.
答:小鸟妈妈至少飞行20米.
点评:此题首先要正确理解题意,把实际问题转化成三角函数的问题,然后利用三角函数解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2008•岳阳)如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求点C,D的坐标;
(2)若一次函数y=kx-2(k≠0)的图象过C点,求k的值.
(3)若y=kx-2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2008•岳阳)如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=x2+bx+c过点A和点B,与y轴交于C点.
(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,)(m<0)在抛物线y=x2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《平面直角坐标系》(02)(解析版) 题型:解答题

(2008•岳阳)如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求点C,D的坐标;
(2)若一次函数y=kx-2(k≠0)的图象过C点,求k的值.
(3)若y=kx-2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.

查看答案和解析>>

科目:初中数学 来源:2010年四川省内江市二中中考数学一模试卷(解析版) 题型:解答题

(2008•岳阳)如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=x2+bx+c过点A和点B,与y轴交于C点.
(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,)(m<0)在抛物线y=x2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省岳阳市中考数学试卷(解析版) 题型:解答题

(2008•岳阳)如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=x2+bx+c过点A和点B,与y轴交于C点.
(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,)(m<0)在抛物线y=x2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案