精英家教网 > 初中数学 > 题目详情
精英家教网已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:∠AME=∠CMB.
分析:可以分两种作法:
(1)过A作CB的平行线交CE的延长线于点N.可证明△NAC≌△MCB以及△AME≌△ANE,从而得出∠AME=∠CMB;
(2)作∠ACB的平分线交BM于点N.可以证明△AEC≌△CNB以及△AME≌△CMN,即可得出∠AME=∠CMB.
解答:精英家教网证明:
证法一:过A作CB的平行线交CE的延长线于点N.
∵∠ACB=90°
∴∠1+∠NCB=90°
∵CF⊥MB
∴∠2+∠NCB=90°
∴∠1=∠2
∵AN∥BC且∠ACB=90°
∴∠NAC=90°
在△NAC和△MCB中
∠1=∠2
AC=CB
∠NAC=∠ACB

∴△NAC≌△MCB(A.S.A)
∴∠N=∠CMB
∵AN=MC
∵M是AB中点∴AM=MC=AN
∵∠ACB=90°AC=BC
∴∠3=∠ABC=45°
∵AN∥BC∴∠4=∠ABC
∴∠3=∠4
在△AME和△ANE中
AM=AN
∠3=∠4
AE=AE

∴△AME≌△ANE(S.A.S)
∴∠AME=∠N,
∵∠N=∠CMB
∴∠AME=∠CMB;

证法二:作∠ACB的平分线交BM于点N.                                                         精英家教网
∵AC=BC∠ACB=90°
∴∠ABC=∠A=45°
∠MCE+∠BCE=90°
∴∠MCE=∠MBC<∠ABC=45°
∴N点在线段BF上.
∵CN是∠ACB的平分线
∴∠ACN=∠BCN=45°
在△AEC和△CNB中
∠A=∠BCN
AC=CB
∠ACE=∠MBC

∴△AEC≌△CNB
∴CN=AE
∵M是AB中点
∴AM=MC
在△AME和△CMN中
∠A=∠MCN
CN=AE
AM=MC

∴△AME≌△CMN,
∴∠AME=∠CMB.
点评:本题考查了全等三角形的判定和性质以及等腰直角三角形的性质,要注意一题多解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是边AB的中点,E、G分别是边AC、BC上的一点,∠EMG=45°,AC与MG的延长线相交于点F.
(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;
(2)连接结EG,当AE=3时,求EG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
3
,解这个直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D为AC上一点(不与A、C不精英家教网重合),过D作DQ⊥AC(DQ与AB在AC的同侧);点P从D点出发,在射线DQ上运动,连接PA、PC.
(1)当PA=PC时,求出AD的长;
(2)当△PAC构成等腰直角三角形时,求出AD、DP的长;
(3)当△PAC构成等边三角形时,求出AD、DP的长;
(4)在运动变化过程中,△CAP与△ABC能否相似?若△CAP与△ABC相似,求出此时AD与DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)观察图形,猜想BD与⊙O的位置关系:
相切
相切

(2)证明第(1)题的猜想.

查看答案和解析>>

同步练习册答案