精英家教网 > 初中数学 > 题目详情
如图,在直径为10的半圆AB上有两个动点C,D,弦AC、BD相交于点P,连接OP.
(1)若BD=8,试求出圆心O到弦BD的距离OE的长度;
(2)试比较∠OPA和∠OPB的大小;(只写结论,不需证明)
(3)试求出AP•AC+BP•BD的值.

【答案】分析:(1)构造直角三角形利用勾股定理求得OE的长即可;
(2)根据弦的大小关系判断弦所对的圆心角的大小关系即可,注意分类讨论.
(3)连接AD,过P作PM⊥AB,垂足为M证得△ABD∽△PBM后即可得到答案.
解答:解:(1)∵OE⊥BD
(1分)(3分)

(2)①若AC<BD,∠OPA>∠OPB
②若AC=BD,∠OPA=∠OPB
③若AC>BD,∠OPA<∠OPB(8分)
(写一个得(2分),写全得5分)

(3)连接AD,过P作PM⊥AB,垂足为M
则有∠ADB=∠PMB=90°,(9分)
又∠DBA=∠PBM
∴△ABD∽△PBM(11分)

同理有
∴AP•AC=AB•AMBP•BD=AB•MB(13分)
∴AP•AC+BP•BD=AB•AM+AB•MB
=AB(AM+MB)
=AB2=100(14分)
(没有过程只写出最后答案得(1分),只写特殊情况的推理计算得2分)
点评:本题考查了垂径定理及勾股定理的知识,题目中应用到了分类讨论思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直径为10的半圆AB上有两个动点C,D,弦AC、BD相交于点P,连接OP.
(1)若BD=8,试求出圆心O到弦BD的距离OE的长度;
(2)试比较∠OPA和∠OPB的大小;(只写结论,不需证明)
(3)试求出AP•AC+BP•BD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直径为10的⊙O中,作两条互相垂直的直径AE和BF,在弧EF上取点C,弦AC交BF于P,弦CB交AE于Q,求证:四边形APQB的面积等于25.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市101中学九年级(上)第一次月考数学试卷(解析版) 题型:解答题

已知:如图,在直径为10的⊙O中,作两条互相垂直的直径AE和BF,在弧EF上取点C,弦AC交BF于P,弦CB交AE于Q,求证:四边形APQB的面积等于25.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省中考数学模拟试卷(二)(解析版) 题型:解答题

如图,在直径为10的半圆AB上有两个动点C,D,弦AC、BD相交于点P,连接OP.
(1)若BD=8,试求出圆心O到弦BD的距离OE的长度;
(2)试比较∠OPA和∠OPB的大小;(只写结论,不需证明)
(3)试求出AP•AC+BP•BD的值.

查看答案和解析>>

科目:初中数学 来源:2007年广东省广州市天河区中考数学二模试卷(解析版) 题型:解答题

如图,在直径为10的半圆AB上有两个动点C,D,弦AC、BD相交于点P,连接OP.
(1)若BD=8,试求出圆心O到弦BD的距离OE的长度;
(2)试比较∠OPA和∠OPB的大小;(只写结论,不需证明)
(3)试求出AP•AC+BP•BD的值.

查看答案和解析>>

同步练习册答案