精英家教网 > 初中数学 > 题目详情
8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )
A.(1345,0)B.(1345.5,$\frac{\sqrt{3}}{2}$)C.(1345,$\frac{\sqrt{3}}{2}$)D.(1345.5,0)

分析 连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2017=336×6+1,因此点B1向右平移1344(即336×4)即可到达点B2017,根据点B5的坐标就可求出点B2017的坐标.

解答 解:连接AC,如图所示.
∵四边形OABC是菱形,
∴OA=AB=BC=OC.
∵∠ABC=60°,
∴△ABC是等边三角形.
∴AC=AB.
∴AC=OA.
∵OA=1,
∴AC=1.
画出第5次、第6次、第7次翻转后的图形,如图所示.
由图可知:每翻转6次,图形向右平移4.
∵2017=336×6+1,
∴点B1向右平移1344(即336×4)到点B2017
∵B1的坐标为(1.5,$\frac{\sqrt{3}}{2}$),
∴B2017的坐标为(1.5+1344,$\frac{\sqrt{3}}{2}$),
∴B2017的坐标为(1345.5,$\frac{\sqrt{3}}{2}$).
故答案为:(1345.5,$\frac{\sqrt{3}}{2}$).

点评 本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2017,最少经过多少次操作(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列方程中,有两个相等实数根的方程是(  )
A.x(x-1)=0B.x2-x+1=0C.x2-2=0D.x2-2x+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.
(1)求抛物线的解析式.
(2)设点P为抛物线对称轴上的一个动点.
①如图①,若点P为抛物线的顶点,求△PBC的面积.
②是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代表式a2015+2016b+c2017的值为(  )
A.2015B.2016C.2017D.0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3,随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号,规定当两次摸出的小球标号相同时中奖,则中奖的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,甲船从点O出发,自南向北以40海里/时的速度行驶;乙船在点O正东方向120海里的A处,以30海里/时的速度自东向西行驶,经过2或$\frac{22}{25}$小时两船的距离为100海里.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,延长平行四边形ABCD的边DC到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:BF=CF;
(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四边形ABCD的面积.

查看答案和解析>>

同步练习册答案