精英家教网 > 初中数学 > 题目详情
13.函数y=$\frac{1}{x-2}$中,自变量x的取值范围是x≠2.计算($\sqrt{2}$)2的结果是2.化简$\frac{2xy}{\sqrt{2x}}$的结果是$\sqrt{2x}$y.

分析 根据分母不等于0即可得;由二次根式的性质可得;分母有理化可得.

解答 解:∵函数y=$\frac{1}{x-2}$中,x-2≠0,
∴x≠2;
($\sqrt{2}$)2=2;
$\frac{2xy}{\sqrt{2x}}$=$\frac{(\sqrt{2x})^{2}y}{\sqrt{2x}}$=$\sqrt{2x}$y;
故答案为:x≠2,2,$\sqrt{2x}$y.

点评 本题主要考查函数自变量的取值范围、二次根式的性质与化简,熟练掌握常见函数自变量取值范围确定及二次根式的性质是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.有一道题“先化简,再求值:($\frac{4x}{{x}^{2}-4}$+$\frac{x-2}{x+2}$)÷$\frac{1}{{x}^{2}-4}$,其中x=-5”马小虎同学做题时把“x=-5”错抄成了“x=5”,但他的计算结果却与别的同学一致,也是正确的,请你解释这是怎么回事?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是(  )
A.y=-$\sqrt{3}$x2+6$\sqrt{3}$x-8$\sqrt{3}$B.y=-2$\sqrt{3}$x2-12$\sqrt{3}$x+16$\sqrt{3}$
C.y=2$\sqrt{3}$x2+12$\sqrt{3}$x-16$\sqrt{3}$D.y=-$\frac{\sqrt{3}}{3}$x2+2$\sqrt{3}$x-$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.①|-8|-2-1+20150-2×24÷22
②2(x+1)(x-1)-(2x+1)2-2x(1-x)
③20152-2016×2014
④[2x(2y2-4y+1)-2x]÷(-4xy)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:$\sqrt{9}$+$\sqrt{4}$-$\root{3}{-27}$  
(2)求x的值:4x2-36=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算
(1)$\sqrt{4}$-$\sqrt{(-3)^{2}}$+$\root{3}{-8}$-|-$\sqrt{36}$|
(2)解方程:(x+2)2=25.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图(1),四边形ABCD为正方形,E为CD边上的一点,连结AE,并以AE为对称轴,作与△ADE成轴对称的图形△AGE,延长EG(或GE)交直线BC于F.

(1)求证:DE+BF=EF;∠EAF=45°;
(2)若E为CD延长线上一点,如图(2),则线段DE,BF,EF之间有怎样的关系,∠EAF等于几度?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为(  )
A.8B.7C.6D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知点A(2,2),B(1,0),点C在坐标轴上,且三角形ABC的面积为2,请写出所有满足条件的点C的坐标:(3,0),(-1,0),(0,2),(0,-6).

查看答案和解析>>

同步练习册答案