精英家教网 > 初中数学 > 题目详情
等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连接CE.
(1)如图1,若点D在线段BC上,求证:CE+CD=AB;
(2)如图2,若点D在CB的延长线上,线段CE,CD,AB的数量有怎样的数量关系?请加以证明.
分析:(1)如图1,根据△ADE与△ABC都是等边三角形,容易得到全等条件证明△CAE≌△BAD,再根据全等三角形的性质可以证明题目的结论;
(2)如图2,根据(1)可知D的位置对△CAE≌△BAD没有影响,所以结论仍然成立,证明方法完全相同.
解答:证明:(1)如图1,∵△ADE与△ABC都是等边三角形,
∴AC=AB,AE=AD,∠DAE=∠BAC=60°.
∴∠DAE-∠CAD=∠BAC-∠CAD.
即∠CAE=∠BAD.
在△CAE和△BAD中,
AC=AB
∠CAE=∠BAD
AE=AD

∴△CAE≌△BAD(SAS).
∴EC=DB(全等三角形的对应边相等);
∴CE+CD=DB+CD=BC=AB,即CE+CD=AB;

(2)CE+CD=AB;
理由如下:如图2,∵△ADE与△ABC都是等边三角形,
∴AC=AB,AE=AD,∠DAE=∠BAC=60°.
∴∠DAE-∠BAE=∠BAC-∠BAE.
即∠CAE=∠BAD.
在△CAE和△BAD中,
AC=AB
∠CAE=∠BAD
AE=AD

∴△CAE≌△BAD(SAS).
∴EC=DB(全等三角形的对应边相等);
∴CE+AB=DB+BC=CD,即CE+AB=CD.
点评:本题主要考查了等边三角形的性质、全等三角形的判定与性质.等边三角形的三条边相等、等边三角形的三个内角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知等边△ABC,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为(  )
A、0.5B、1C、2D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县一模)如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.
下面的证法供你参考:
把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
实践探索:
(1)请你仿照上面的思路,探索解决下面的问题:
如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>
2
AD.
(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.
创新应用:
(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京市怀柔九年级上学期期末考试数学试卷(解析版) 题型:解答题

(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.

【类比探究】

(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】

(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.
下面的证法供你参考:
把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
实践探索:
(1)请你仿照上面的思路,探索解决下面的问题:
如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>数学公式AD.
(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.
创新应用:
(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.

查看答案和解析>>

同步练习册答案