精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.

(1)求a,b的值;
(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM//OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR//MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.

【答案】
(1)

解:

∵y=﹣x+4与x轴交于点A,

∴A(4,0),

∵点B的横坐标为1,且直线y=﹣x+4经过点B,

∴B(1,3),

∵抛物线y=ax2+bx经过A(4,0),B(1,3),

,解得:

∴a=﹣1,b=4;


(2)

解:方法一:

如图,作BD⊥x轴于点D,延长MP交x轴于点E,

∵B(1,3),A(4,0),

∴OD=1,BD=3,OA=4,

∴AD=3,

∴AD=BD,

∵∠BDA=90°,∠BAD=∠ABD=45°,

∵MC⊥x轴,∴∠ANC=∠BAD=45°,

∴∠PNF=∠ANC=45°,

∵PF⊥MC,

∴∠FPN=∠PNF=45°,

∴NF=PF=t,

∵∠PFM=∠ECM=90°,

∴PF//EC,

∴∠MPF=∠MEC,

∵ME//OB,∴∠MEC=∠BOD,

∴∠MPF=∠BOD,

∴tan∠BOD=tan∠MPF,

= =3,

∴MF=3PF=3t,

∵MN=MF+FN,

∴d=3t+t=4t;

方法二:

延长MP交x轴于点M′,作M′N′//MN交AB于N′,

延长FP交M′N′于F′,∵M′N′//MN,∴△PMN∽△PM′N′,

,∵O(0,0),B(1,3),

∴KOB=3,

∵PM//OB,

∴KPM=KOB=3,则lPM:y=3x+b,设P(p,﹣p+4),则b=4﹣4p,

∴lPM:y=3x+4﹣4P,把y=0代入,∴x=

∴M′( ,0),

∵N′x=M′x,把x= 代入y=﹣x+4,

∴y=

∴N′( ),∴M′N′=

∵PF′⊥M′N′,

∴PF′=p﹣ =


(3)

解:方法一:

如备用图,由(2)知,PF=t,MN=4t,

∴S△PMN= MN×PF= ×4t×t=2t2

∵∠CAN=∠ANC,

∴CN=AC,

∴S△ACN= AC2

∵S△ACN=S△PMN

AC2=2t2

∴AC=2t,

∴CN=2t,

∴MC=MN+CN=6t,

∴OC=OA﹣AC=4﹣2t,

∴M(4﹣2t,6t),

由(1)知抛物线的解析式为:y=﹣x2+4x,

将M(4﹣2t,6t)代入y=﹣x2+4x得:

﹣(4﹣2t)2+4(4﹣2t)=6t,

解得:t1=0(舍),t2=

∴PF=NF= ,AC=CN=1,OC=3,MF= ,PN= ,PM= ,AN=

∵AB=3

∴BN=2

作NH⊥RQ于点H,

∵QR//MN,

∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,

∴∠MNH=∠NCO,

∴NH//OC,

∴∠HNR=∠NOC,

∴tan∠HNR=tan∠NOC,

= =

设RH=n,则HN=3n,

∴RN= n,QN=3 n,

∴PQ=QN﹣PN=3 n﹣

∵ON= =

OB= =

∴OB=ON,∴∠OBN=∠BNO,

∵PM//OB,

∴∠OBN=∠MPB,

∴∠MPB=∠BNO,

∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,

∴∠BRN=∠MQP,

∴△PMQ∽△NBR,

=

=

解得:n=

∴R的横坐标为:3﹣ = ,R的纵坐标为:1﹣ =

∴R( ).

方法二:设M(t,﹣t2+4t),N(t,﹣t+4),

∴MN=﹣t2+4t+t﹣4=﹣t2+5t﹣4,

∴PF= (﹣t2+5t﹣4),

∴S△PMN= (﹣t2+5t﹣4)2= (t﹣4)2(t﹣1)2

∵KAB=﹣1,∴∠OAB=45°,

∴CA=CN=4﹣t,

∴S△ACN= (t﹣4)2,

∵S△ACN=S△PMN

(t﹣4)2(t﹣1)2= (t﹣4)2

∴t1=﹣1,(舍),t2=3,

∴M(3,3),

∵MX=NX=3,

∴N(3,1),

∴ON=

∵B(1,3),

∴OB=

∴OB=ON,∠OBN=∠ONB,

∵OB//MP

∴∠OBN=∠QPM,

∴∠ONB=∠QPM,∠RQA=45°,

∵∠MQR﹣∠BRN=45°,

∴∠BRN=∠MQP,

∴△BRN∽△MQP,

∵KPM=3,M(3,3),

∴lPM:y=3x﹣6,

∵lAB:y=﹣x+4,

∴P(2.5,1.5),

设R(3t,t),

∴Q(3t,﹣3t+4),

∴t1= ,t2= (舍),

∴R( ).


【解析】(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;(2)已知MN=d,PF=t,由图可知MN=MF+FN,不妨将MF和FN用PF代替,即可得到MN与PF的关系:利用45°的直角三角形和平行线性质可推得FN=PF=t,∠MPF=∠BOD,再利用tan∠BOD=tan∠MPF,得 = =3,从而有MF=3PF=3t,从而得出d与t的函数关系;(3)过点N作NH⊥QR于点H,由图象可知R点横坐标为OC﹣HN,纵坐标为CN﹣RH.OC=OA﹣AC,其中OA已知,利用S△ACN=S△PMN求得AC=2t,再将用t表示的M点坐标代入抛物线解析式求得t值,即得AC的值,又由(2)中AC=CN,可知CN,则求得HN和RH的值是关键.根据tan∠HNR=tan∠NOC,可得 = = ,设RH=n,HN=3n,勾股定理得出RN的值,再利用已知条件证得△PMQ∽△NBR,建立比例式求得n值,即可得出HN和RH的值,从而得到R的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.
(1)分别求反比例函数和一次函数的解析式(关系式);
(2)连接OA,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)化简: (2)解方程:

【答案】(1) ;(2)x=-2.

【解析】1)先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分化简;

(2)两边都乘以最简公分母2(x+3),把分式方程化为整式方程求解,求出x的值不要忘记检验.

(1)原式===;

(2)解:去分母得:

解得:x=2,

经检验x=2是分式方程的解

原方程的解x=2

点睛:本题考查了分式的混合运算和解分式方程,熟练掌握分式的运算法则和解分式方程的方法是解答本题的关键.

型】解答
束】
20

【题目】小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:

请根据以上不完整的统计图提供的信息,解答下列问题:

(1)小张同学共调查了    名居民的年龄,扇形统计图中a=    

(2)补全条形统计图,并注明人数;

(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为    

(4)若该辖区年龄在0~14岁的居民约有2400人,请估计该辖区居民有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x轴于CD两点,与反比例函数y=x>0)的图象交于Am,8),B(4,n)两点.

(1)求反比例函数的解析式;

(2)根据图象直接写出x的取值范围;

(3)求的面积.

【答案】(1)y= ;(2) ;(3)15.

【解析】(1)B(4,n两点分别代入可求出n的值,确定B点坐标为B(4,2),后利用待定系数法求反比例函数的解析式;

(2)观察函数图象得到当,反比例函数的图象在一次函数图象上方.

(3)求得直线与坐标轴轴的交点坐标,根据三角形面积公式即可求得.

1)将代入

得反比例函数的关系式是.

(2) ,

(3)点的坐标是(0,10),点的坐标是(5,0),

分别过点A、B两点作轴、轴的垂线段,

.

点睛:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式以及观察图象的能力.

型】解答
束】
25

【题目】探索发现:根据你发现的规律,回答下列问题

(1)        

(2)利用你发现的规律计算:    

(3)灵活利用规律解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.
(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?
(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若不等式组 的解集为0<x<1,则a、b的值分别为(
A.a=2,b=1
B.a=2,b=3
C.a=﹣2,b=3
D.a=﹣2,b=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店用 6000 元购进一批衬衫,以 60 元/件的价格出售,很快售完,然后又用 13500元购进同款衬衫,购进数量是第一次的 2 倍,购进的单价比上一次每件多 5 元,服装店 仍按原售价 60 元/件出售,并且全部售完.

1)该服装店第一次购进衬衫多少件?

2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或 亏损)多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示

平均数(cm)

561

560

561

560

方差s2

3.5

3.5

15.5

16.5

根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案