精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠ABC的平分线与∠ACE的平分线相交于点D,
(1)若∠ABC=60°,∠ACB=40°,求∠A和∠D度数;
(2)由第(1)小题的计算,发现∠A和∠D有什么关系?它们是不是一定有这种关系?请作出说明.

解:(1)在△ABC中,∠ABC=60°,∠ACB=40°,
∴∠A=180°-∠ABC-∠ACB=80°,
∵BD为∠ABC,CD为∠ACE的角平分线,
∴∠DBC=∠ABC=×60°=30°,
∠ACD=(180°-∠ACB)=×140°=70°,
∴∠D=180°-∠DBC-∠ACB-∠ACD=180°-30°-40°-70°=40°,
∴∠A=80°,∠D=40°.

(2)通过第(1)的计算,得到∠A=2∠D,理由如下:
∵∠ACE=∠A+∠ABC,
∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,
又BD平分∠ABC,CD平分∠ACE,
∴∠ABD=∠DBE,∠ACD=∠ECD,
∴∠A=2(∠DCE-∠DBC),∠D=∠DCE-∠DBC,
∴∠A=2∠D.
分析:(1)根据三角形内角和定理,已知∠ABC=60°,∠ACB=40°,易求∠A和∠D度数.
(2)根据三角形内角和定理以及角平分线性质,先求出∠D的等式,再与∠A比较即可解答.
点评:此类题关键是考查三角形内角和定理以及角平分线性质的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案