精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是(  )
A.
B.
C.
D.

【答案】B
【解析】解:∵在正方形ABCD中,AC=3 ∴BC=AB=3,
延长A′B′交BC于点E,
∵点A′的坐标为(1,2),
∴OE=1,EC=A′E=3﹣1=2,
∴OE:BC=1:3,
∴AA′:AC=1:3,
∵AA′=CC′,
∴AA′=CC′=A′C′,
∴A′C′:AC=1:3,
∴正方形A′B′C′D′与正方形ABCD的相似比是
故选B.

【考点精析】掌握位似变换是解答本题的根本,需要知道它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设a、b、c是直角三角形的三边,c为斜边,n为正整数,试判断an+bn与cn的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.
(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?
(2)设每件商品的售价为x元,超市所获利润为y元. ①求y与x之间的函数关系式;
②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)
.
(2)解分式方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图①ABC和△AED都是等腰直角三角形,∠BAC=EAD=90°,点B在线段AE上,点C在线段AD上,请直接写出线段BE与线段CD的数量关系:   

(2)操作探究

如图②,将图①中的△ABC绕点A顺时针旋转,旋转角为α(0<α<360),请判断线段BE与线段CD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

(2)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.
(1)求证:AE平分∠CAB;
(2)探求图中∠1与∠C的数量关系,并求当AE=EC时tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

如图,若点B把线段分成两条长度相等的线段ABBC,则点B叫做线段AC的中点.

回答问题:

(1)如图,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.

A是线段DB的中点,则点D表示的数是   

E是线段AC的中点,求点E表示的数.

(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.

若点P表示的数是1,则mn可能的值是   (填写符合要求的序号);

im=0,n=2;(iim=﹣5,n=7;(iiim=0.5,n=1.5;(ivm=﹣1,n=2

直接用含mn的代数式表示点P表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

同步练习册答案