精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.

(1)求这条抛物线对应的函数解析式;

(2)求直线AB对应的函数解析式.

【答案】(1)y=x2+2x+1;(2)y=2x+2.

【解析】

试题分析:(1)抛物线与x轴仅有1个交点可知=0时,即可得到4a24a=0,解方程即可求得a,即可得到抛物线解析式;(2)先求得A的坐标,已知点C是线段AB的中点,可判定点A与点B的横坐标互为相反数,再确定B点坐标,最后利用待定系数法求直线AB的解析式.

试题解析:

(1)抛物线y=ax2+2ax+1与x轴仅有一个公共点A,

∴△=4a24a=0,解得a1=0(舍去),a2=1,

抛物线解析式为y=x2+2x+1;

(2)y=(x+1)2

顶点A的坐标为(1,0),

点C是线段AB的中点,

即点A与点B关于C点对称,

B点的横坐标为1,

当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),

设直线AB的解析式为y=kx+b,

把A(1,0),B(1,4)代入得,解得,

直线AB的解析式为y=2x+2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DEACAE

1)求证:△AED≌△DCA

2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式计算正确的是(
A.2x4﹣x2=x2
B.(2x24=8x8
C.x2x3=x6
D.(﹣x)6÷(﹣x)2=x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同一时刻,同一地区,太阳光下物体的高度与投影长的比是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,∠ABC=60°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,FE交AC于M点.

(1)求证:AG=GH;

(2)求四边形GHME的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.

(1)求证:△ABD≌△EBD;

(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题7)如图,在RtABCACB=90°,EAC上一点,且AE=BC,过点AADCA,垂足为A,且AD=AC,AB、DE交于点F.

(1)判断线段ABDE的数量关系和位置关系,并说明理由;

(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(1+x)(2x2+mx+5)的计算结果中x2项的系数为﹣3,则m=

查看答案和解析>>

同步练习册答案