精英家教网 > 初中数学 > 题目详情
对于式子(-3)6与-36,下列说法中,正确的是(  )
分析:根据有理数的乘方的定义解答.
解答:解:(-3)6与表示-3的6次幂,结果是729,
-36表示3的6次幂的相反数,结果是-729.
故选D.
点评:本题考查了有理数的乘方,主要是(-3)6与-36的区别,需熟记.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、对于式子-(-8),下列理解:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示-8的绝对值;(4)运算结果等于8.其中理解错误的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•椒江区一模)请仔细阅读下面两则材料,然后解决问题:
材料1:小学时我们学过,任何一个假分数都可以化为一个整数与一个真分数的和的形式,同样道理,任何一个分子次数不低于分母次数的分式都可以化为一个整式与另一个分式的和(或差)的形式,其中另一个分式的分子次数低于分母次数.
x2-2x-4
x-1
=
(x2-x)+(-x+1)+(-5)
x-1
=(x-1)-
5
x-1

如:对于式子2+
3
1+x2
,因为x2≥0,所以1+x2的最小值为1,所以
3
1+x2
的最大值为3,所以2+
3
1+x2
的最大值为5.根据上述材料,解决下列问题:问题1:把分式
4x2+8x+7
1
2
x2+x+1
 化为一个整式与另一个分式的和(或差)的形式,其中另一
4x2+8x+7
1
2
x2+x+1
个分式的分子次数低于分母次数.
问题2:当x的值变化时,求分式8-
2
(x+1)2+1
的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

从A、B量水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各调查水14万吨,从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:万吨•千米)尽可能小.
(1)设从A水库调往甲地的水量为x万吨,请你在下面表格空白处填上适当的数或式子.
地区
水库
总计
A x
14-x
14-x
14
B
15-x
15-x
x-1
x-1
14
总计 15 13 28
(2)请你注意:影响水的调运量的因素有两个,即水量(单位:万吨)和运程(单位:千米),水的调运量是两者的乘积(单位:万吨•千米).因此,从A到甲地有个调运量,从A到乙地也有个调运量:从B地….设水的调运总量为y万吨•千米,则y与x的函数关系式y=
10x+1270
10x+1270
(要求最简形式)
(3)对于(2)中y与x的函数关系式,若求自变量的取值范围,应该列不等式组:
x≥0
15-x≥0
14-x≥0
x-1≥0
x≥0
15-x≥0
14-x≥0
x-1≥0
,解这个不等式组得:
1≤x≤14,
1≤x≤14,
,据此,在给出的坐标系中画出这个函数的图象(不要求写作法).
(4)结合函数解析式及其图象说明水的最佳调运方案,水的最小调运总量为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

对于式子(-3)6与-36,下列说法中,正确的是


  1. A.
    它们的意义相同
  2. B.
    它们的结果相同
  3. C.
    它们的意义不同,结果相等
  4. D.
    它们的意义不同,结果也不相等

查看答案和解析>>

同步练习册答案