精英家教网 > 初中数学 > 题目详情
16.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为(  )
A.25:9B.5:3C.$\sqrt{5}$:$\sqrt{3}$D.5$\sqrt{5}$:3$\sqrt{3}$

分析 先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.

解答 解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,
∵△ABC与△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,
∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵S△BAC=$\frac{1}{2}$AD•BC=$\frac{1}{2}$AB•sinB•2AB•cosB=25sinB•cosB,
S△A′B′C′=$\frac{1}{2}$A′D′•B′C′=$\frac{1}{2}$A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,
∴S△BAC:S△A′B′C′=25:9.
故选A.

点评 本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,在三角形ABC中,B(2,0),把三角形ABC沿AC边平移,使A点到C点,三角形ABC变换为三角形CED,已知C(0,3.5),请写出A,D,E的坐标,并说出平移的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,直线AB与⊙O相切于点A,弦CD∥AB,若⊙O的半径为$\frac{5}{2}$,CD=4,则弦AD的长为(  )
A.4B.2$\sqrt{5}$C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.将“祝你考试成功”这六个字分别写在一个正方体的六个面上.若这个正方体的展开图如图所示,则在这个正方体中,与“你”字相对的字是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算:($\frac{1}{3}$)-2-|1-$\sqrt{2}$|+(π-3.14)0+$\frac{1}{2}$$\sqrt{8}$+tan60°
(2)解方程:2x2-3x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是$\frac{8}{3}$米.
(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3$\sqrt{7}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{2}{7}$D.$\frac{7}{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为(  )
A.1:2B.1:3C.1:4D.1:1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,l1∥l2,∠1=56°,则∠2的度数为(  )
A.34°B.56°C.124°D.146°

查看答案和解析>>

同步练习册答案