【题目】若a、b满足,且A(a,0)、B(0,b)
(1) 如图,在x正半轴上有一点C(x,0).若△ABC的面积大于6,请直接写出x的取值范围____________;
(2)若在平面直角坐标系第四象限上存在一点N,N的坐标为(n,﹣n),满足4≤S△ABN≤8,求n的取值范围.
(3)若在平面直角坐标系上存在一点M,M的坐标为(m,﹣2m),请通过计算说明:无论m取何值△ABM的面积为定值,并求出这个值.
【答案】(1);(2) (3) 无论m取何值△ABM的面积为定值,面积为1个单位平方,证明见解析.
【解析】
(1)根据非负数的性质求出a,b的值,得到A,B点的坐标,根据三角形面积公式列出不等式求解即可;
(2)分N点在直线AB左侧时(n>0)和右侧时(n>0)两种情况求解,分别求出S△ABN用n表示的代数式,再解不等式组即可;
(3)分三种情况,根据三角形面积计算公式进行求解即可.
(1) ∵
∴
解得,
∴A(1,0),B(0,2)
∴OA=1,OB=2,
∵C(x,0)
∴AC=x-1
∴S△ABC=
解得,,
故答案为:;
(2)当N点在直线AB左侧时(n>0)
过N做NF⊥x轴于F,做NE⊥y轴于E,
∵N(n,﹣n),A(1,0),B(0,2),
∴AO=1,BO=2,EN=FN=n
∴S△ABN=S△AON+S△ABO﹣S△OBN
∴S△ABN=
∴ ∴,不合题意舍去;
当N点在直线AB右侧时(n>0)
过N做NF⊥x轴于F,做NE⊥y轴于E,
∵N(n,﹣n),A(1,0),B(0,2),
∴AO=1,BO=2,EN=FN=n
∴S△ABN=S△BON﹣S△ABO﹣S△AON
∴S△ABN=
∴ ∴
综上所述:n的取值范围为
(3)证明:1)当点M为原点(m=0)时, S△ABM=1
2)当点M(m<0)在第二象限时,如图:
过M做ME⊥x轴于E,做MF⊥y轴于F
∵M(m,﹣2m),A(1,0),B(0,2),
∴MF=﹣m,EM=﹣2m,AO=1,BO=2,
∴S△ABM=S△BOM+S△ABO﹣S△OAM
∴S△ABM=
∴S△ABM=1
3)当点M(m>0)在第四象限时,如图:
过M做EF⊥x轴于F,过B点做BE⊥EF于E
∵M(m,﹣2m),A(1,0),B(0,2),
∴MF=m,EM=2m,AO=1,BO=2,
∴S△ABM=S△AOM+S△ABO﹣S△BOM
∴S△ABM=
∴S△ABM=1
综上所述:无论m取何值△ABM的面积为定值,面积为1个单位平方.
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)求证:∠ABE=∠ACD;
(2)求证:过点A、F的直线垂直平分线段BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系;并说明理由.
(2)如果∠B=60°,证明:CD=3BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系xOy中,函数y= (x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m∠ACD.
(1)已知 ,求m的值,及∠BCD、∠ACD的度数各是多少?
(2)在(1)的条件下,且 ,求弦CD的长;
(3)当 时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠B=30°,将Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小为( )
A.115°
B.125°
C.120°
D.145°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,AB∥CD,点P在AB、CD外部,若∠B=60°,∠D=30°,则∠BPD= °;
(2)如图2,AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
(3)在图2中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图3,若∠BPD=86°,∠BMD=40°,求∠B+∠D的度数.
图1 图2 图3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com