分析 (1)根据角平分线的定义可得∠BAD=∠CAD,然后利用“边角边”证明即可;
(2)根据全等三角形对应边相等可得AE=AB,DE=BD,全等三角形对应角相等可得∠AED=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AED=∠C+∠CDE,从而求出∠C=∠CDE,根据等角对等边可得CE=DE,然后根据AC=AE+CE计算即可得解.
解答 (1)证明:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD,
在△ABD和△AED中,$\left\{\begin{array}{l}{AE=AB}\\{∠BAD=∠CAD}\\{AD=AD}\end{array}\right.$,
∴△ABD≌△AED(SAS);
(2)解:∵△ABD≌△AED,
∴AE=AB=9,DE=BD=5,∠AED=∠B,
由三角形的外角性质得,∠AED=∠C+∠CDE,
又∵∠ABC=2∠C,
∴∠C=∠CDE,
∴CE=DE=5,
∴AC=AE+CE=9+5=14.
点评 本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于(2)求出CE=DE.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com