【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;
(1)使三角形的三边长分别为2,3,
(在图中画出一个既可);
(2)请在数轴上作出的对应点
(2)如图①,A,B,C是三个格点(即小正方形的顶点),判断AB与BC的位置关系,并说明理由;
(3)如图②,连接三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图,并说明理由).
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)画一个直角边为2、3的直角三角形即可;
(2)以边为3和1的直角三角形的斜边画圆,与负半轴交点即为所求;
(3)先证明△ABC是等腰直角三角形,从而得出∠α+∠β=45°.
(1);
(2);
(3)AB⊥BC.理由:如图①,连接AC.由勾股定理可得
AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,
所以AB2+BC2=AC2,
所以△ABC是直角三角形且∠ABC=90°
所以AB⊥BC.
(4)∠α+∠β=45°.
理由:如图②,由勾股定理得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,
所以△ABC是直角三角形且∠ABC=90°.
又因为AB=BC,所以△ABC是等腰直角三角形,
所以∠BAC=45°,即∠α+∠γ=45°.
由图可知∠β=∠γ,所以∠α+∠β=45°.
科目:初中数学 来源: 题型:
【题目】如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).若点C落在AB边下方的点E处,则△ADE的周长p的取值范围是( )
A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是 ;若往盒中再放进1个黑球,这时取得黑球的概率变为 .
(1)填空:x= , y=;
(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)??
C.( , )、(﹣ ,4)
D.( , )、(﹣ ,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA=OB,点P为△ABO的角平分线的交点,若PN⊥PA交x轴于N,延长OP交AB于M,写出AO,ON,PM之间的数量关系,并证明之.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com