精英家教网 > 初中数学 > 题目详情
2.两个相似三角形的面积和为78cm2,一组对应边的边长分别为2cm和3cm,则较大三角形的面积为(  )
A.44.8cmB.42cmC.52cmD.54cm

分析 根据相似三角形面积的比等于相似比的平方列式计算即可.

解答 解:因为两个三角形相似,
∴较小三角形与较大三角形的面积比为($\frac{2}{3}$)2
设较小三角形的面积为x,则较大三角形的面积为78-x,
$\frac{x}{78-x}$=$\frac{4}{9}$,
解得,x=24,
78-x=54,
故选:D.

点评 本题考查了相似三角形性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.

(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是ME=MC,∠EMC=120°;
(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.
①(1)中ME与MC的数量关系仍然成立吗?请证明你的结论;
②求∠EMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.设b为正整数,a为实数,记M=a2-4ab+5b2+2a-2b+$\frac{11}{4}$,在a,b变动的情况下,求M可能取得的最小整数值.并求出M取得最小整数值时a、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.甲、乙两仓库存有货物,若从甲仓中取出15吨放入乙仓,则两仓所存货物同样多,若从乙仓取6吨放入甲仓,则甲仓的货物是乙仓的3倍,原来两仓各存货物多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知多项式2x2-3x+5与多项式ax+b的乘积中x2,x的系数分别是-2和-5,试求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.二次函数y=ax2+bx+c,若b2=ac,且当x=0时,y=-4,求这个函数的最值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.三角形具有稳定性,边数大于或等于4的多边形不具有稳定性,研究多边形常常借助于三角形的知识.
已知:AC=BD=2,AC与BD所成的角为60°,AC的中点为O.

观察与思考下列问题:
(1)如图1,当点B与点O重合时,连接各项点构成△ACD,延长OC到点E,使CE=AO,连结DE,如图2,则S△ACD=S△ODE=$\sqrt{3}$;
(2)将图1中的DB沿DO所在的方向向下平移,当BD被点O平分时,连接各顶点构成矩形ABCD,如图3,若求矩形ABCD的面积,可将其转化为求三角形的面积;延长OC到点E,使CE=AO,延长OD到点F,使DF=BO,连接EF,如图4,S矩形ABCD=S△OEF?请你说明理由;
(3)将图1中的DB沿DO所在的方向向下平移,BD过AC的中点O,当移动到如图5时,请你参照上面的作法,将四边形ABCD将转化为一个三角形,借助这个三角形求出四边形ABCD的面积.
解决问题:
如图6,线段AD=BE=CF=2,AD、BE、CF相交于点O,∠AOF=∠FOE=∠EOD=60°,连接各顶点构成凸六边形ABCDEF,设S△OAB+S△OCD+S△OEF=S,请你说明S与$\sqrt{3}$之间数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角;逆命题是假命题(填“真”或“假”).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC的度数为(  )
A.30°B.40°C.60°D.80°

查看答案和解析>>

同步练习册答案