【题目】在研究反比例函数y=﹣的图象时,我们发现有如下性质:
(1)y=﹣的图象是中心对称图形,对称中心是原点.
(2)y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.
(3)在x<0与x>0两个范围内,y随x增大而增大;
类似地,我们研究形如:y=﹣+3的函数:
(1)函数y=﹣+3图象是由反比例函数y=﹣图象向____平移______个单位,再向_______平移______个单位得到的.
(2)y=﹣+3的图象是中心对称图形,对称中心是______.
(3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由.
(4)对于函数y=,x在哪些范围内,y随x的增大而增大?
【答案】(1)右,2,上,3;(2)(2,3);(3)是轴对称图形,对称轴是:y=x+1和y=﹣x+5;(4)x<2或x>2.
【解析】
(1)根据图象平移的法则即可解答;
(2)根据平移的方法,函数y=﹣的中心原点平移后的点就是对称中心;
(3)图象平移后与原来的直线y=x和y=-x平行,并且经过对称中心,利用待定系数法即可求解;
(4)把已知的函数y=变形成的形式,类比反比例函数性质即可解答.
解:(1)函数y=﹣+3图象是由反比例函数y=﹣图象向右平移 2个单位,再向上平移3个单位得到的.
故答案为:右2上3.
(2)y=﹣+3的图象是中心对称图形,对称中心是(2,3).
故答案为:(2,3).
(3)该函数图象是轴对称图形.
∵y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.
设y=﹣+3对称轴是y=x+b,把(2,3)代入得:3=2+b,
∴b=1,
∴对称轴是y=x+1;
设y=﹣+3对称轴是y=﹣x+c,把(2,3)代入得:3=﹣2+c,
∴c=5.
∴对称轴是y=﹣x+5.
故答案为:y=x+1和y=﹣x+5.
(4)对于函数y=,变形得:
y===,
则其对称中心是(2,).
则当x<2或x>2时y随x的增大而增大.
故答案为:x<2或x>2
科目:初中数学 来源: 题型:
【题目】在数轴上点A表示数,点B表示数,AB表示点A和点B之间的距离.,满足.
(1)在原点O处放了一挡板,若一小球P从点A处以3个单位/秒的速度向左运动,同时另一个小球Q从点B处以4个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反方向运动,设运动时间t(秒),问t为何值时,P、Q两球到原点的距离相等?
(2)若小球P从点A以每秒4个单位的速度向右运动,小球Q同时从点B以每秒3个单位得速度向左运动,则是否存在时间t,使得AP+BQ=2PQ?若存在,请求出时间t;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)|﹣2|+|﹣10|﹣|﹣5|
(2)(﹣3.5)+(+8)﹣(﹣5.5)+(﹣2)
(3)﹣42+3×(﹣2)2×(-1)÷(﹣1)
(4)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)2019
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
(1)求的值;
(2)以AB为一边,在AB的左侧作正方形,求C点坐标;
(3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)36+(-25)+12+(-15);
(2) 9+(-2.5)+(+6)+(-3.5);
(3)3.7+(-9.1)+6.3+(-0.9) ;
(4)10-(-5)-(-6)-(+18)
(5)(-12)-6-(-8)-(-12);
(6)5-(-5)+(-10)+0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在数轴上A点表示数a,B点表示数b,C点表示数C,b是最小的正整数,且a=﹣2,c=7.
(1)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(3)请问:3BC﹣2AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为(_______)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com