精英家教网 > 初中数学 > 题目详情
(2012•老河口市模拟)如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、ED交于点F,AD平分∠BAC.
(1)求证:EF是⊙O的切线;
(2)若AE=3,AB=4,求图中阴影部分的面积.
分析:(1)根据等腰三角形性质和角平分线性质得出∠OAD=∠ODA=∠DAE,推出OD∥AC,推出OD⊥EF,根据切线的判定推出即可;
(2)证△BAD∽△DAE,求出AD长,根据锐角三角函数的定义求出∠BAD=30°,求出∠BOD=60°和求出BD=2=OB=OD,求出扇形BOD和△BOD的面积,相减即可.
解答:解:(1)连接OD.
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,
∴∠DEA=90°,
∴∠ODF=∠DEA=90°,
∵OD是半径,
∴EF是⊙O的切线.
(2)∵AB为⊙O的直径,DE⊥AC,
∴∠BDA=∠DEA=90°,
∵∠BAD=∠CAD,
∴△BAD∽△DAE,
AB
AD
=
AD
AE

4
AD
=
AD
3

∴AD=2
3

∴cos∠BAD=
AD
AB
=
2
3
4
=
3
2

∴∠BAD=30°,∠BOD=2∠BAD=60°,
∴BD=
1
2
AB=2,
∴S△BOD=
1
2
S△ABD=
1
2
×
1
2
×2
3
×2=
3

∴S阴影=S扇形BOD-S△BOD=
60π×22
360
-
3
=
2
3
π-
3
点评:本题考查了锐角三角函数的定义,等腰三角形的性质,平行线的性质和判定,切线的判定,三角形的面积,扇形的面积计算等知识点,主要考查学生综合运用定理进行推理的能力,综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•老河口市模拟)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=2,F为AD的中点,则点F到BC的距离是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•老河口市模拟)已知两圆半径分别为4和6,圆心距为d,若两圆相离,则d的取值范围是
d>10或0≤d<2
d>10或0≤d<2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•老河口市模拟)若二次函数y=ax2+bx+c(a≠0)图象的最低点的坐标为(1,-1),则关于x的一元二次方程ax2+bx+c=-1的根为
x1=x2=1
x1=x2=1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•老河口市模拟)如图是某工厂货物传送带的平面示意图.为提高传送过程的安全性,工厂计划改造传送带与地面的夹角,使其由原来的45°减小为30°.已知原传送带AB长为6米,新传送带AC的长为
6
2
6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•老河口市模拟)先化简,再求值(
3
a+1
-a+1)÷
a2-4a+4
a+1
,其a=
2
+2

查看答案和解析>>

同步练习册答案