精英家教网 > 初中数学 > 题目详情

【题目】一艘货轮以34海里/时的速度在海面上向正南方向航行,当它行驶至B处时,某观察者发现在货轮的北偏东75°方向有一灯塔C;货轮继续向南航行1.5小时后到达A处,某观察者再次发现灯塔C在货轮的东北方向.求此时货轮与灯塔C的距离.(结果保留到个位)(参考数据:sin75°≈0.97cos75°≈0.29tan75°≈3.73

【答案】98海里.

【解析】

BBTACT,根据正切的定义求出ATBT,再根据正切的定义求出CT,结合图形计算,得到答案.

解:过BBT⊥ACT

AB1.5×3451

Rt△ABT中,∠BAT45°

∴ATBT

∠C75°45°30°

Rt△CBT中,tanC

∴CT

∴ACAT+CT

答:此时货轮与灯塔C的距离约为98海里.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点,交y 轴于点C

1)求抛物线的顶点坐标.

2)点为抛物线上一点,是否存在点使,若存在请直接给出点坐标;若不存在请说明理由.

3)将直线绕点顺时针旋转,与抛物线交于另一点,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城乡对接,建设美丽乡村,某地区对AB两地间的公路进行改建,如图,AB两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC80千米,∠A45°,∠B30°.

(1)开通隧道前,汽车从A地到B地要走多少千米?

(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,ABACBD平分∠ABCAC于点DDE平分∠ADBAB于点E,过点CCFABED延长线于点F,若∠A48°

1)求∠DBC的度数;

2)求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B02),A(﹣6,﹣1)在反比例函数的图象上,作射线AB,再将射线AB绕点A逆时针旋转45°后,交反比例函数图象于点C,则点C的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2 mA处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.

(1)h=2.6时,求yx的关系式(不要求写出自变量x的取值范围)

(2)h=2.6时,球能否越过球网?球会不会出界?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD

1)如图(2),若ABCD相交于圆外一点P, 上面的结论是否成立?请说明理由.

2)如图(3,PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PAPBPC之间的数量关系.

3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1,阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABCDEF的顶点都在格点上,P1,P2,P3,P4,P5DEF边上的5个格点,请按要求完成下列各题:

(1)试证明三角形ABC为直角三角形;

(2)判断ABCDEF是否相似,并说明理由;

(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与ABC相似(要求:不写作法与证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明设计的“作等腰三角形外接圆”的尺规作图过程.

已知:如图1,在中,AB=AC.

求作:等腰的外接圆.

作法:

①如图2,作的平分线交BC于D ;

②作线段AB的垂直平分线EF;

③EF与AD交于点O;

④以点O为圆心,以OB为半径作圆.

所以,就是所求作的等腰的外接圆.

根据小明设计的尺规作图过程,

(1)使用直尺和圆规,补全图形(保留痕迹);

(2)完成下面的证明.

AB=AC,

_________________________.

AB的垂直平分线EF与AD交于点O,

OA=OB,OB=OC

(填写理由:______________________________________

OA=OB=OC.

查看答案和解析>>

同步练习册答案