分析 (1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
(2)根据根据菱形的性质作出判断:EF与BD互相垂直平分;
(3)根据Rt△ABF的边角关系,求得BF和AF,再根据矩形的性质,求得DF的长,最后计算矩形的面积.
解答 解:(1)∵四边形ABCD是平行四边形,O是BD中点,
∴BC∥AD,OB=OD,
∴∠OBE=∠ODF,
又∵∠BOE=∠DOF,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,根据菱形的性质可得:EF与BD互相垂直平分;
(3)∵四边形BEDF是矩形
∴∠AFB=90°
又∵∠A=60°,
∴∠ABF=30°,
∴AF=$\frac{1}{2}$AB=$\frac{1}{2}$×4=2,
∴Rt△ABF中,BF=2$\sqrt{3}$,
又∵AD=BC=6,
∴DF=6-2=4,
∴矩形BEDF的面积=BF×DF=2$\sqrt{3}$×4=8$\sqrt{3}$.
点评 本题主要考查了平行四边形的判定与性质,菱形、矩形的性质以及全等三角形的判定与性质,解题时注意:矩形的对边平行且相等,菱形的对角线互相垂直平分,对角线互相平分的四边形是平行四边形.
科目:初中数学 来源: 题型:选择题
A. | 相等的角是对顶角 | |
B. | 两条直线被第三条直线所截,同位角相等 | |
C. | 垂直于同一条直线的两条直线互相平行 | |
D. | 实数与数轴上的点是一一对应的 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 由x-(2-3x)=5得x-2+3x=5 | B. | 由$\frac{x}{5}$=5得x=25 | ||
C. | 由7x=6x-4得7x-6x=-4 | D. | 由5x=2得x=$\frac{2}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3和1 | B. | 2和3 | C. | 1和2 | D. | 0和1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com