精英家教网 > 初中数学 > 题目详情

【题目】如图,E点为DF上的点,BAC上的点,∠1=∠2,∠C=∠D,那么DFAC,请完成它成立的理由

∵∠1=∠2,∠2=∠3 ,∠1=∠4(

∴∠3=∠4(

∴________∥_______ (

∴∠C=∠ABD

∵∠C=∠D

∴∠D=∠ABD

DFAC

【答案】对顶角相等,CEBD,内错角相等,两直线平行,两直线平行,同位角相等

【解析】

此题主要利用对顶角相等,得出∠2=∠3,∠1=∠4,然后等量代换得出∠3=∠4;根据内错角相等,两直线平行,得出BD∥CE,再根据平行线的性质:两直线平行,同位角相等,得出∠C=∠ABD,然后证出∠D=∠ABD,进而证得DF∥AC.

∵∠1=∠2,( 已知

又∵∠2=∠3 ,∠1=∠4 对顶角相等

∴∠3=∠4 等量代换

_____BD_____CE_____ 内错角相等,两直线平行

∴∠C=∠ABD 两直线平行,同位角相等

∵∠C=∠D已知

∴∠D=∠ABD等量代换

DFAC 内错角相等,两直线平行

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,…,按照这种移动规律进行下去,第n次移动到达点An,如果点An与原点的距离不小于50,那么n的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图17,在△ABC中,DBC边上的一点,EAD的中点,过ABC的平行线交CE的延长线于F,且AFBD,连接BF.

(1)求证:BDCD.

(2)如果ABAC,试判断四边形AFBD的形状,并证明你的结论.

(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一科技小组进行了机器人行走性能试验,在试验场地有ABC三点顺次在同一笔直的赛道上,AB两点之间的距离是90米,甲、乙两机器人分别从AB两点同时同向出发到终点C,乙机器人始终以50米分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t3分钟时,甲追上乙.

请解答下面问题:

1BC两点之间的距离是   米.

2)求甲机器人前3分钟的速度为多少米/分?

3)若前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,求两机器人前6分钟内出发多长时间相距28米?

4)若6分钟后甲机器人的速度又恢复为原来出发时的速度,直接写出当t6时,甲、乙两机器人之间的距离S.(用含t的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DO平分AOCOE平分BOC,若OAOB

(1)当∠BOC=30°,∠DOE_______________当∠BOC=60°,∠DOE_______________

(2)通过上面的计算,猜想∠DOE的度数与∠AOB有什么关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC中,AB=AC,点DE分别在边ABAC上,且AD=AE,连接BECD,交于点F

(1)判断∠ABE与∠ACD的数量关系,并说明理由;

(2)求证:过点AF的直线垂直平分线段BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学在平时的练习中,遇到下面一道题目:

如图,∠AOC=90°,OE 平分∠BOC,OD平分∠AOB.

①若∠BOC=60°,求∠DOE 度数;

②若∠BOC=α(0<α<90°),其他条件不变,求∠DOE 的度数.

(1)下面是某同学对①问的部分解答过程,请你补充完整.

∵OE 平分∠BOC,∠BOC=60°

∴∠BOE= . (角平分线的定义)

∵∠AOC=90°,∠BOC=60°

∵OD 平分∠AOB,

,(角平分线的定义)

∴∠DOE= .

(注:符号∵表示因为,用符号∴表示所以).

(2)仿照①的解答过程,完成第②小题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若直线y=3x+m经过第一、三、四象限,则抛物线y=(x-m) +1的顶点在第象限( )
A.一
B.二
C.三
D.四

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与思考:

整式乘法与因式分解是方向相反的变形,由

可得

利用这个式子可以将某些二次项系数是1的二次三项式分解因式.

例如:将式子分解因式.

这个式子的常数项,一次项系

所以

解:

上述分解因式的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).

请仿照上面的方法,解答下列问题:

(1)分解因式:=___________________;

(2)若可分解为两个一次因式的积,则整数P的所有可能值是________.

查看答案和解析>>

同步练习册答案