15£®Èçͼ£¬Å×ÎïÏßy=ax2-$\frac{1}{3}$x+8µÄ¶Ô³ÆÖáΪx=-$\frac{4}{5}$£¬Ö±Ïßy=-$\frac{3}{4}$x+bÓëx¡¢yÖá·Ö±ðÏཻÓÚµãA£¨4£¬0£©¡¢Bµã£®µãPÊÇÖ±ÏßABÉÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£¨µãP²»ÓëÖ±ÏߺÍÅ×ÎïÏߵĽ»µãÖغϣ©£¬¹ýµãP×÷Ö±ÏßPC¡ÍAB½»ABÓÚµãC£¬×÷PD¡ÍxÖáÓÚµãD£¬½»Ö±ÏßABÓÚµãE£®ÉèµãPµÄºá×ø±êΪn£®
£¨1£©Çóa¡¢bµÄÖµ£»
£¨2£©Éè¡÷PCEµÄÖܳ¤Îªl£¬Çól¹ØÓÚnµÄº¯Êý¹Øϵʽ£»
£¨3£©¹ýµãP¡¢E¡¢C×÷ƽÐÐËıßÐÎPEFC£¬Ö±½Óд³öƽÐÐËıßÐÎPEFCµÄÖܳ¤LµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉÅ×ÎïÏߵĶԳÆÖáΪx=-$\frac{b}{2a}$=-$\frac{4}{5}$£¬Óɴ˼´¿ÉµÃ³ö¹ØÓÚaµÄ·Öʽ·½³Ì£¬½â·½³Ì¼´¿ÉÇó³öaÖµ£¬¸ù¾ÝµãAµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öbÖµ£»
£¨2£©ÁªÁ¢Ö±ÏßABÓëÅ×ÎïÏß½âÎöʽ³É·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó³öÖ±ÏßABÓëÅ×ÎïÏߵĽ»µã×ø±ê£¬Óɴ˼´¿ÉµÃ³önµÄÈ¡Öµ·¶Î§£¬ÔÙ¸ù¾ÝPC¡ÍAB£¬PD¡ÍxÖá¼´¿ÉµÃ³ö¡÷PCE¡×¡÷ADE£¬¸ù¾ÝÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃ³ö$\frac{{C}_{¡÷PCE}}{{C}_{¡÷ADE}}$=$\frac{PE}{AE}$£¬ÓɵãPµÄºá×ø±ê¼´¿ÉµÃ³öµãP¡¢E¡¢DµÄ×ø±ê£¬Óɴ˼´¿ÉµÃ³öAD¡¢DE¡¢AE¼äµÄ¹Øϵ£¬¸ù¾ÝÈý½ÇÐεÄÖܳ¤¹«Ê½Çó³öC¡÷ADEÓëAE¼äµÄ¹Øϵ£¬Óɴ˼´¿ÉµÃ³öl¹ØÓÚnµÄº¯Êý¹Øϵʽ£»
£¨3£©¸ù¾Ý£¨2£©PEÒÔ¼°nµÄÈ¡Öµ·¶Î§¿ÉÇó³öPEµÄÈ¡Öµ·¶Î§£¬ÓÃPE±íʾ³öPC¡¢CE£¬·ÖÈýÖÖÇé¿ö¿¼ÂÇƽÐÐËıßÐÎPEFCµÄÖܳ¤L£¬ÀûÓÃƽÐÐËıßÐεÄÖܳ¤¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2-$\frac{1}{3}$x+8µÄ¶Ô³ÆÖáΪx=-$\frac{4}{5}$£¬
¡à-$\frac{-\frac{1}{3}}{2a}$=-$\frac{4}{5}$£¬½âµÃ£ºa=-$\frac{5}{24}$£®
¡ßÖ±Ïßy=-$\frac{3}{4}$x+bÓëxÖá½»ÓÚµãA£¨4£¬0£©£¬
¡à0=-$\frac{3}{4}$¡Á4+b£¬½âµÃ£ºb=3£®
£¨2£©ÁªÁ¢Ö±ÏßABÓëÅ×ÎïÏß½âÎöʽ£¬µÃ£º$\left\{\begin{array}{l}{y=-\frac{5}{24}{x}^{2}-\frac{1}{3}x+8}\\{y=-\frac{3}{4}x+3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=-4}\\{y=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=6}\\{y=-\frac{3}{2}}\end{array}\right.$£®
¡ßµãPÊÇÖ±ÏßABÉÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£¨µãP²»ÓëÖ±ÏߺÍÅ×ÎïÏߵĽ»µãÖغϣ©£¬µãPµÄºá×ø±êΪn£¬
¡à-4£¼n£¼6£¬P£¨n£¬-$\frac{5}{24}{n}^{2}$-$\frac{1}{3}$n+8£©£¬E£¨n£¬-$\frac{3}{4}$x+3£©£¬D£¨n£¬0£©£®
¡ßPC¡ÍAB£¬PD¡ÍxÖᣬ
¡à¡ÏPCE=¡ÏADE=90¡ã£¬
¡ß¡ÏPEC=¡ÏAED£¬
¡à¡÷PCE¡×¡÷ADE£¬
¡à$\frac{{C}_{¡÷PCE}}{{C}_{¡÷ADE}}$=$\frac{PE}{AE}$£®
¡ßP£¨n£¬-$\frac{5}{24}{n}^{2}$-$\frac{1}{3}$n+8£©£¬E£¨n£¬-$\frac{3}{4}$n+3£©£¬D£¨n£¬0£©£¬A£¨4£¬0£©£¬
¡àAD=|4-n|£¬DE=|-$\frac{3}{4}$n+3|=$\frac{3}{4}$|4-n|£¬AE=$\frac{5}{4}$|4-n|£¬PE=-$\frac{5}{24}{n}^{2}$-$\frac{1}{3}$n+8-£¨-$\frac{3}{4}$n+3£©=-$\frac{5}{24}$n2+$\frac{5}{12}$n+5£®
¡ßC¡÷ADE=AD+DE+AE=3|4-n|=$\frac{12}{5}$AE£¬
¡àl=C¡÷PCE=$\frac{12}{5}$PE=-$\frac{1}{2}$n2+n+12£¨-4£¼n£¼6£©£®
£¨3£©¡ß$\frac{PC}{AD}=\frac{CE}{DE}=\frac{PE}{AE}$£¬
¡àPC=$\frac{4}{5}$PE£¬CE=$\frac{3}{5}$PE£®
¡ßPE=-$\frac{5}{24}$n2+$\frac{5}{12}$n+5=-$\frac{5}{24}$£¨n-1£©2+$\frac{125}{24}$£¬-4£¼n£¼6£¬
¡à0£¼PE¡Ü$\frac{125}{24}$£®
¹ýµãP¡¢E¡¢C×÷ƽÐÐËıßÐÎPEFC·ÖÈýÖÖÇé¿ö£º
¢ÙÒÔPC¡¢CEΪ±ß×÷ƽÐÐËıßÐΣ¬
´ËʱL=2£¨PC+CE£©=$\frac{16}{5}$PE£¬
¡à0£¼L¡Ü$\frac{50}{3}$£»
¢ÚÒÔPC¡¢PEΪ±ß×÷ƽÐÐËıßÐΣ¬
´ËʱL=2£¨PC+PE£©=$\frac{18}{5}$PE£¬
¡à0£¼L¡Ü$\frac{75}{4}$£»
¢ÛÒÔPE¡¢CEΪ±ß×÷ƽÐÐËıßÐΣ®
´ËʱL=2£¨PE+CE£©=$\frac{16}{5}$PE£¬
¡à0£¼L¡Ü$\frac{50}{3}$£®
×ÛÉϵãºÆ½ÐÐËıßÐÎPEFCµÄÖܳ¤LµÄÈ¡Öµ·¶Î§Îª0£¼L¡Ü$\frac{50}{3}$»ò0£¼L¡Ü$\frac{75}{4}$£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊÒÔ¼°Æ½ÐÐËıßÐεÄÖܳ¤£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó³öaµÄÖµ£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öbµÄÖµ£»£¨2£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÕÒ³öl=$\frac{12}{5}$PE£»£¨3£©·ÖÈýÖÖÇé¿öÓÃPE±íʾ³öL£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʵóöÁ½Èý½ÇÐεÄÖܳ¤±ÈµÈÓÚ¶ÔÓ¦±ß±ÈÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®»¯¼ò£º
£¨1£©£¨$\sqrt{3}$£©0-$\sqrt{3}$cos30¡ã+2-1£»
£¨2£©$\frac{2m}{{m}^{2}-1}$-$\frac{1}{m-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èôx=3ÊÇ·½³Ì$\frac{x-a}{2}-2=x-1$µÄ½â£¬Ôò²»µÈʽ$£¨2-\frac{a}{5}£©£¼\frac{1}{3}x$µÄ½â¼¯ÊÇx£¾9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªµÈÑü¡÷ABC£¬ÆäÑüÉϵĸßÏßÓëÁíÒ»ÑüµÄ¼Ð½ÇΪ35¡ã£¬ÄÇô¶¥½ÇΪ¶ÈÊýÊÇ55¡ã»ò125¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô2x6-my4Óë-3x3y2nÊÇͬÀàÏÔò£¨m-n£©2015=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚ´úÊýʽ-1£¬x+3y£¬0£¬m=n£¬-a£¬$\frac{x-y}{3}$£¬$\frac{2}{x}$£¬-4ab2ÖУ¬µ¥ÏîʽÓУ¨¡¡¡¡£©
A£®3¸öB£®4¸öC£®5¸öD£®6¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®½ñÄꡰʮһ¡±»Æ½ðÖÜÆڼ䣬ÎÒÊÐÖ÷Òª¾°Çø¾°µãÈËÆø»ð±¬£¬¾ÝÊÐÂÃÓξÖͳ¼Æ£¬±¾´ÎС³¤¼Ù¾°ÇøÃÅƱÊÕÈëΪ369.7ÍòÔª£¬½«ÕâÒ»Êý¾ÝÓÿÆѧ¼ÇÊý·¨±íʾΪ3.697¡Á106Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÔÚµÈÑü¡÷ABCÖУ¬¡ÏBAC=120¡ã£¬AB=AC£¬DΪABµÄÖе㣬BE¡ÍBC£¬BE=AD£¬AE·Ö±ð½»CDÓÚF£¬½»BCÓÚK£®ÈôDF=1£¬ÔòKCµÄ³¤Îª$\frac{3\sqrt{21}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªA£¨a£¬2£©ÓëB£¨-3£¬b£©¹ØÓÚyÖá¶Ô³Æ£¬Ôòa+b=5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸