【题目】在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.
(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)
(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.
【答案】(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.
【解析】
(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n
(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),
当x=21,y=7时,x+y=28,x﹣y=14,
∴可以形成的数字密码是:212814、211428;
(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),
∵当x=27时可以得到其中一个密码为242834,
∴27+p=24,27+q=28,27+r=34,
解得,p=﹣3,q=1,r=7,
∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),
∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,
∴ 得,
即m的值是56,n的值是17.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-1,3),B(-2,1),C(-3,1).
(1)①画出△ABC关于y轴对称的△A1B1C1 , 并写出A1点的坐标及sin∠B1C1A1的值;
②以原点O为位似中心,位似比为1:2,在y轴的左侧,画出将△ABC放大后的△A2B2C2 , 并写出A2点的坐标;
(2)若点D为线段BC的中点,直接写出经过(2)的变化后点D的对应点D2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】聪聪、明明、伶伶、俐俐四人共同探究代数式的值的情况他们做了如下分工,聪聪负责找值为0时的值,明明负责找值为4时的值,伶伶负责找最小值,俐俐负责找最大值,几分钟,各自通报探究的结论,其中正确的是( )
(1)聪聪认为找不到实数,使的值为0;
(2)明明认为只有当时,的值为4;
(3)伶伶发现有最小值;(4)俐俐发现有最大值
A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(2)(4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,连接BE,EC.下列判断:①△ABE≌△DCE;②BE=EC;③BE⊥EC;④EC=DE.其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB,AC交于点G,F.
(1)求证:GE=GF;
(2)填空:若BD=1,则DF的长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次地震中,某村受地震影响严重,已经成为一片废墟.为重建家园,政府准备修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.
(1)请问若由甲、乙两工程队合作修建需几个月完成?共耗资多少万元?
(2)若由甲、乙两工程队先合作,剩下的由乙队来完成,且恰好历时4个月完成修建任务,求这样安排共耗资多少万元?(时间按整月计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )
A.55°
B.70°
C.125°
D.145°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.
A型客车 | B型客车 | |
载客量(人/辆) | 40 | 25 |
日租金(元/辆) | 320 | 200 |
车辆数(辆) | a | b |
(1)求a、b的值;
(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.
①最多能租用A型客车多少辆?
②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com