精英家教网 > 初中数学 > 题目详情

【题目】如图所示,ABCD在同一直线上,ABCDDEAF,若要使△ACF≌△DBE,则还需要补充一个条件:_____

【答案】 AFDE∠E∠FBE∥CF

【解析】

本题要判定△ACF≌△DBE,由已知DE∥AF可得∠A=∠D,又有AC=BD,具备了一组角、一组边对应相等,然后根据全等三角形的判定定理,有针对性的添加条件.

解:添加AF=DE∠E=∠FBE∥CF∠ACF=∠DBE后可分别根据SASAASASAASA能判定△ACF≌△DBE

故填AF=DE∠E=∠FBE∥CF∠ACF=∠DBE等,答案不唯一.

考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSSSASASAAASHL.添加时注意:AAASSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了传承优秀传统文化,我市组织了一次七年级1200名学生参加的汉字听写大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:

组别

成绩分组

频数

频率

A

35≤x38

3

0.03

B

38≤x41

a

0.12

C

41≤x44

20

0.20

D

44≤x47

35

0.35

E

47≤x≤50

30

b

请根据所提供的信息解答下列问题:

1)频率统计表中a   b   

2)请补全频数分布直方图;

3)在扇形统计图中D组的圆心角是   度;

4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=-x(x3)0≤x≤3),记为C1,它与x轴交于点OA1

C1绕点A1旋转180°C2,交x 轴于点A2C2绕点A2旋转180°C3,交x 轴于点A3

……

如此进行下去,直至得C13

P1m)在C1上,则m =_________

P37n)在第13段抛物线C13上,则n =_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,对角线ACBD相交于点O,给出下列四组条件:①AB∥CDAD∥BC②AB=CDAD=BC③AO=COBO=DO④AB∥CDAD=BC。其中一定能判断这个四边形是平行四边形的条件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××

小张同学要破解其密码:

(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是   

(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;

(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)()2(2)0+(0.2)2018×(5)2018

(2)用整式乘法公式计算:10121

(3)(x2y+2x2yy3)÷y(y+2x)(2xy)

(4)先化简,再求值:(a2b)2+(ab)(a+b)2(a3b)(ab),其中,a1b=﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理(解析)

提出问题:如图1,在四边形ABCD中,PAD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:

APAD(如图2)

APAD,△ABP和△ABD的高相等,

SABPSABD

PDADAPAD,△CDP和△CDA的高相等

SCDPSCDA

SPBCS四边形ABCDSABPSCDPS四边形ABCDSABDSCDA

S四边形ABCD(S四边形ABCDSDBC)(S四边形ABCDSABC)SDBC+SABC.

(1)APAD时,探求SPBCSABCSDBC之间的关系式并证明;

(2)APAD时,SPBCSABCSDBC之间的关系式为:   

(3)一般地,当APAD(n表示正整数)时,探求SPBCSABCSDBC之间的关系为:   

(4)APAD(01)时,SPBCSABCSDBC之间的关系式为:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MNPQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE

1)求证:BE=CE

2)求BEC的度数

查看答案和解析>>

同步练习册答案