精英家教网 > 初中数学 > 题目详情
已知:直线过抛物线的顶点P,如图所示.

(1)顶点P的坐标是     
(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线的交点坐标.
解:(1)∵y=﹣x2﹣2x+3=﹣(x 2+2x)+3=﹣(x+1) 2+4,
∴P点坐标为:(﹣1,4)。
(2)将点P(﹣1,4),A(0,11)代入y=ax+b得:,解得:
∴该直线的表达式为:y=7x+11。
(3)∵直线y=mx+n与直线y=7x+11关于x轴成轴对称,
∴y=mx+n过点P′(﹣1,﹣4),A′(0,﹣11)。
,解得:
∴y=﹣7x﹣11。∴﹣7x﹣11=﹣x 2﹣2x+3。
解得:x1=7,x2=﹣2,此时y1=﹣60,y2=3。
∴直线y=mx+n与抛物线y=﹣x2﹣2x+3的交点坐标为:(7,﹣60),(﹣2,3)。

试题分析:(1)利用配方法求出图象的顶点坐标即可:
(2)利用待定系数法求一次函数解析式即可。
(3)根据关于x轴对称点的坐标性质,首先求出直线y=mx+n的解析式,进而得出直线y=mx+n与抛物线y=﹣x2﹣2x+3的交点坐标。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.

(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。

(1)求证:CD是⊙M的切线;
(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;
(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.

(1)点C的坐标是     ,线段AD的长等于     
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年浙江义乌10分)小明合作学习小组在探究旋转、平移变换.如图△ABC,△DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F().
(1)他们将△ABC绕C点按顺时针方向旋转450得到△A1B1C.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;
(2)他们将△ABC绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线上.请你求出符合条件的抛物线解析式;
(3)他们继续探究,发现将△ABC绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线上,则可求出旋转后三角形的直角顶点P的坐标.请你直接写出点P的所有坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A(0,4),B(2,0).

(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.

(1)求抛物线的解析式.
(2)当DE=4时,求四边形CAEB的面积.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是【   】

A.    B.   C.  D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则
y1>y2.其中说法正确的是【   】
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

同步练习册答案