【题目】如图1,AB是曲线,BC是线段,点P从点A出发以不变的速度沿A﹣B﹣C运动,到终点C停止,过点P分别作x轴、y轴的垂线分别交x轴、y轴于点M、点N,设矩形MONP的面积为S运动时间为(秒),S与t的函数关系如图2所示,(FD为平行x轴的线段)
(1)直接写出k、a的值.
(2)求曲线AB的长l.
(3)求当2≤t≤5时关于的函数解析式.
【答案】(1)k=6,a=5;(2)曲线AB的长l=;(3).
【解析】
(1)设P点坐标为(x,y)由图象可知,图2中B点与图1中D点对应,在B点时,S=6,故得k=6,图2中E点与图1中C点对应,在E点时,S=30,故得6a=30,可求a=5.
(2)通过勾股定理可计算BC放入长度=,而BC段用时3秒,故可知P点的速度是,由A到B用时可得曲线AB的长l.
(3)由图(1)可知B(3,2),C坐标(6,5),由B到C是从第2秒后开始到第5秒用时3秒,故P的坐标可设为(1+t,t),即可得S与t的函数关系.
解:(1)∵B点与图1中D点对应,
∴k=2×3=6,
∵图2中E点与图1中C点对应,故P在C点时,S=30.
∴a==5.
故:k=6,a=5;
(2)∵BC==3,
∴P点的速度==,
∴曲线AB的长l=×2=2.
(3)由图(1)可知B(3,2),C坐标(6,5),P点由B到C用时3秒,故可设P点坐标为(t+1,t),
矩形MONP的面积为S=t(t+1)=t2+t,(2≤t≤5).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了深入培养学生交通安全意识,加强实践活动,新华中学八年级(1)班和交警队联合举行了“我当一日小交警”活动,利用星期天到交通路口值勤,协助交通警察对行人、车辆及非机动车辆进行纠章.在这次实践活动中,若每一个路口安排5名学生,那么还剩下4人;若每个路口安排6人,那么最后一个路口不足3人,但不少于1人.
(1)求新华中学八年级(1)班有多少名学生?
(2)在值勤过程中,学生发现每辆汽车驶出路口后有三种方式前行:左转、直行、右转,而且每种前行方式的可能性相同.请通过画树形图或列表的方法,求连续驶出路口的两辆汽车前行路线相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E、F在对角线AC上,且AE=CF,
(1)证明:△ABE≌△ADE;
(2)证明:四边形BFDE是菱形;
(3)若AC=4,BD=8,AE=,请求出四边形BFDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,先将边长为6m的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△AB′C′,当两个三角形重叠部分的面积为8cm2时,它移动的距离AA′等于_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有______(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.
(1)求证:四边形ABCD为矩形;
(2)若N为MF中点,求证:NB是⊙O的切线;
(3)若F为GE中点,且DE=6,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com