精英家教网 > 初中数学 > 题目详情
在?ABCD中,对角线AC、BD相交于点O,且AB≠AD,则下列四个结论①AC⊥BD,②AB=CD,③BO=OD,④∠BAD=∠BCD中不正确的是
 (填序号)
分析:根据平行四边形的性质可知,平行四边形的对边相等,对角线互相平分,两组对角分别相等,由此判断出选项②③④正确.再由平行四边形对角线互相平分可知OB=OD,利用反证法假设AC垂直BD,再加上一条公共边,得到两个三角形的全等,由全等三角形的对应边相等得出AB=AD,与已知AB≠AD矛盾,故AC不能与BD垂直,所以判断出选项①错误.
解答:解:∵四边形ABCD为平行四边形,
∴AB=CD,则选项②正确;
又根据平行四边形的对角线互相平分,
∴BO=OC,则选项③正确;
又∵四边形ABCD为平行四边形,
∴AB∥CD,AD∥BC,
∴∠ABC+∠BCD=180°,∠BAD+∠ABC=180°,
∴∠BAD=∠BCD,则选项④正确;
由BO=OD,假设AC⊥BD,
又∵OA=OA,
∴△ABO≌△ADO,
∴AB=AD与已知AB≠AD矛盾,
∴AC不垂直BD,则选项①错误.
故答案为①.
点评:本题考查学生对平行四边形性质的熟练掌握及应用,会用反证法进行证明,是一道中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角AC上,以OA长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB精英家教网=∠DCE.
(1)求证:CE是⊙O的切线;
(2)若tan∠ACB=
34
,AE=7,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是只有一组对角为直角的四边形(我们规定这一类四边形的集合为M),连接它的两个非直角顶点的线段叫做这个四边形的“直径”(相当于经过这个四边形的四个顶点的圆的直径).
(1)识图:如图1,四边形ABCD的直径是线段
BD
BD

(2)判断:如图2,在坐标系中(网格小方格的单位长为1)的四边形EFGH是否为M中的四边形?给出简要说明;
(3)思考、操作并解决问题:在图2中找到一个点P,使四边形EFPH为M中的四边形,并且这个四边形用一条直线分割成两块后可以拼成一个正方形.要求:写出点P的坐标、画出分割线,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在下面推理过程的括号内填上推理的依据
已知,如图所示,在?ABCD中,BF=DE.
求证:∠EAF=∠ECF
证明:∵四边形ABCD是平行四边形(
已知
已知

∴DC=AB(
平行四边形的对边相等
平行四边形的对边相等

DC∥AB(
平行四边形的对边相互平行
平行四边形的对边相互平行

又∵BF=DE(
已知
已知

∴AB-BF=DC-DE(
等量代换
等量代换

即AF=CE(
等量代换
等量代换

∴AF 
.
CE
∴四边形AFCE是平行四边形(
对边平行且相等的四边形是平行四边形
对边平行且相等的四边形是平行四边形

∴∠EAF=∠ECF(
平行四边形的对角相等
平行四边形的对角相等

查看答案和解析>>

科目:初中数学 来源:同步训练与评价·数学·八年级·上 题型:022

(1)一个四边形只要具有下列条件之一,就是平行四边形:①两组对边________;②两组对角________;③两条对角线________;④一组对边________.

(2)在四边形ABCD中,当∠A+∠B=、∠B+∠C=时,边AB与CD的关系是________.

(3)在ABCD中,∠BAC=,∠BCA=,则∠B=________.

查看答案和解析>>

科目:初中数学 来源: 题型:022

(2004·广西桂林)如图如示,在ABCD中,BD是对角线,EF是对角在线的两点,要使△BCF≌△DAE,还需添加一个条件(只需添加一个条件)是________.

查看答案和解析>>

同步练习册答案