精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为(  )
A、6
B、3
5
C、5
D、3
3
分析:先根据∠BAC=120°,AB=AC求出∠ACB的度数,再根据圆周角定理得出∠ADB的度数,由于BD是⊙O的直径,故∠BAD=90°,在Rt△ABD中,AB=3,利用锐角三角函数的定义即可求出AD的值.
解答:解:∵∠BAC=120°,AB=AC,
∴∠ACB=30°,
∴∠ACB=∠ADB=30°,
∵BD是⊙O的直径,
∴∠BAD=90°,
∵AB=3,
∴AD=
AB
tan30°
=
3
3
3
=3
3

故选D.
点评:本题考查的是圆周角定理,即同弧所对的圆周角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案