精英家教网 > 初中数学 > 题目详情

(本题满分10分)

如图,已知正比例函数y = ax(a≠0)的图象与反比例函致(k≠0)的图象的一个

 

交点为A(-1,2-k2),另—个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.

(1)写出反比例函数和正比例函数的解析式;

(2)试计算△COE的面积是△ODE面积的多少倍.

 

(1)由图知k>0,a>0.

∵ 点A(-1,2-k2)在图象上,

∴ 2-k2=-k,即 k2-k-2= 0,

解得 k = 2(k=-1舍去),                                      2分

得反比例函数为.                                         3分

此时A(-1,-2),代人y = ax,解得a = 2,

∴ 正比例函数为y = 2x.                                          5分

(2)过点B作BF⊥x轴于F.

∵ A(-1,-2)与B关于原点对称,

∴ B(1,2),                                                   6分

即OF = 1,BF= 2,得 OB =.                                  7分

由图,易知 Rt△OBF∽Rt△OCD,                                  8分

∴ OB : OC = OF : OD,而OD= OB∕2 =∕2,

∴ OC = OB · OD∕OF= 2.5.                                       9分

由 Rt△COE∽Rt△ODE得

所以△COE的面积是△ODE面积的5倍.                             10分

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.

(1)求点与点的坐标;
(2)当四边形为菱形时,求函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)如图是某品牌太阳能热火器的实物图和横断面示意图,已知真空集热管与支架所在直线相交于水箱横断面的圆心,支架与水平面垂直,厘米,,另一根辅助支架厘米,
(1)求垂直支架的长度;(结果保留根号)
(2)求水箱半径的长度.(结果保留三个有效数字,参考数据:
         

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)
如图,四边形ABCD是长方形.

(1)作△ABC关于直线AC对称的图形;
(2)试判断(1)中所作的图形与△ACD重叠部分的三角形形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省泰州市中考数学试卷 题型:解答题

(本题满分10分)如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。

(1)点N是线段BC的中点吗?为什么?

(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。

 

 

查看答案和解析>>

同步练习册答案