精英家教网 > 初中数学 > 题目详情

如图9,抛物线轴相交于两点,与轴相交于点,顶点为.

(1)直接写出三点的坐标;

(2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点交抛物线于点,设点的横坐标为

①     用含的代数式表示线段的长;

②     并求出当为何值时,四边形为平行四边形?

图9

 解:(1)A(-1,0),B(3,0),C(0,3) …………………3分

(2)① 设直线BC的函数关系式为:y=kx+b.

B(3,0),C(0,3)分别代入得:

解得:k= -1,b=3.

所以直线BC的函数关系式为:

抛物线的对称轴为直线x=1

x=1时,y= -1+3=2,∴E(1,2).

时,

∴P(m,m+3).  ………………4分

中,当时, 

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A(5,-4),⊙A与x轴分别相交于点B、C,⊙A与y轴相且于点D,
(1)求证过D、B、C三点的抛物线的解析式;
(2)连接BD,求tan∠BDC的值;
(3)点P是抛物线顶点,线段DE是直径,直线PC与直线DE相交于点F,
∠PFD的平分线FG交DC于G,求sin∠CGF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通二模)如图,已知直线y=
12
x+2
分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=-x2+2kx-
32
k2+2k-2
(k是实数)与x轴有交点,将此抛物线向左平移1个单位,再向上平移4个单位,得到新的抛物线E,设抛物线E与x轴的交点为B,C,如图.
(1)求抛物线E所对应的函数关系式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过点C,得到直线l,点P是l上一动点(与点C不重合).设以点A,B,C,P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤16时,求t的取值范围;
(3)点Q是直线l上的另一个动点,以点Q为圆心,R为半径作圆Q,当R取何值时,圆Q与直线AB相切?相交?相离?直接给出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3
与x轴交于点Q,点P是线段BC上的一个动点,过P作PH垂直OB于点H,若PB=5t,且0<t<1,存在使P,H,Q为顶点的三角形与三角形COQ相似的t的值有
2
-1;
7
32
25
32
2
-1;
7
32
25
32

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•金华模拟)如图,抛物线y=
1
2
x2-
5
2
x与x轴交于O,A两点.半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动.设点P的横坐标为t.
(1)点Q的横坐标是
5-t
5-t
(用含t的代数式表示);
(2)若⊙P与⊙Q相离,则t的取值范围是
0≤t<1或2<t≤
5
2
0≤t<1或2<t≤
5
2

查看答案和解析>>

同步练习册答案