【题目】已知:如图①,△ABC是等边三角形,点D、E分别在边AB、BC上,且BD=BE,连接DE.
(1)求证:DE∥AC;
(2)将图①中的△BDE绕点B顺时针旋转,使得点A、D、E在同一条直线上,如图②,求∠AEC的度数;
(3)在(2)的条件下,如图③,连接CD,过点D作DM⊥BE于点M,在线段BM上取点N,使得∠DNE+∠DCE=180°.求证:EN﹣EC=2MN.
【答案】(1)证明见解析;(2)60°;(3)证明见解析
【解析】
(1)欲证明DE∥AC,只要证明∠DEB=∠C即可;
(2)通过“边角边”证明△ABD≌△CBE,然后推出∠CEB=∠ADB=120°,即可解决问题;
(3)通过“角角边”证明△BDN≌△EDC,得到BN=CE,由DB=DE,DM⊥BE,推出BM=EM,即BN+MN=EN﹣MN,推出CE+MN=EN﹣MN,即EN﹣EC=2MN.
解:(1)证明:如图①中,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
又∵BD=BE,
∴△BDE是等边三角形,
∴∠BED=60°,
∴∠C=∠BED,
∴DE∥AC;
(2)如图2中,
∵△ABC、△BDE都是等边三角形,
∴BA=BC,BD=BE,∠ABC=∠DBE=∠BDE=∠BED=60°,
∴∠ABD=∠CBE,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS),
∴∠CEB=∠ADB,
∵∠ADB=180°﹣∠BDE=180°﹣60°=120°,
∴∠CEB=120°,
∴∠AEC=∠CEB﹣∠BED=120°﹣60°=60°;
(3)证明:如图3中,
∵∠DNE+∠DCE=180°,∠DNE+∠DNB=180°,
∴∠DCE=∠DNB,
由(1)知△BDE是等边三角形,
∴BD=ED,∠DBE=60°,
由(2)知∠AEC=60°,
∴∠DBE=∠AEC,
在△BDN和△EDC中,
,
∴△BDN≌△EDC(AAS),
∴BN=CE,
∵DB=DE,DM⊥BE,
∴BM=EM,即BN+MN=EN﹣MN,
∴CE+MN=EN﹣MN,
∴EN﹣EC=2MN.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的切线,B为切点,圆心O在AC上,∠A=30°,D为的中点.
(1)求证:AB=BC.
(2)试判断四边形BOCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°
(1)求∠CEF的度数;
(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的读数分别为4,13.4,求BC的长(结果保留两位小数).
(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5.
(1)求(-2)⊕3的值
(2)若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一山顶有铁塔AB,从点P到铁塔底部B点有一条索道PB,索道长为300米,与水平线成角为α=30°,在P处测得A点的仰角为β=45°,试求铁塔的高AB.(精确到0.1米,其中≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:
某居民五月份用电190千瓦时,缴纳电费90元.
(1)求x的值和超出部分电费单价;
(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD,EF相交于点O.
(1)写出∠COE的邻补角;
(2)分别写出∠COE和∠BOE的对顶角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com