精英家教网 > 初中数学 > 题目详情
.如图13,D为O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是O的切线;
(2)过点B作O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长
(1)证明:连OD,OE,如图,

∵AB为直径,
∴∠ADB=90°,即∠ADO+∠1=90°,
又∵∠CDA=∠CBD,
而∠CBD=∠1,
∴∠1=∠CDA,
∴∠CDA+∠ADO=90°,即∠CDO=90°,
∴CD是⊙O的切线;
(2)解:∵EB为⊙O的切线,
∴ED=EB,OD⊥BD,
∴∠ABD=∠OEB,
∴∠CDA=∠OEB.
而tan∠CDA=
∴tan∠OEB=
∵Rt△CDO∽Rt△CBE,

∴CD=
在Rt△CBE中,设BE=

解得
即BE的长为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2011•陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D
(1)求证:AP=AC;
(2)若AC=3,求PC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011广西梧州,25,10分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.
(1)求证:AD是⊙O的切线;
(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题 10 分)如图,在 Rt△ABC中,∠ACB=90D是AB 边上的一点,以BD为直径的⊙0与边 AC 相切于点E,连结DE并延长,与BC的延长线交于点 F .
( 1 )求证: BD =" BF" ;
( 2 )若 BC =" 12" , AD =" 8" ,求 BF 的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四个半径为1的小圆都过大圆圆心且与大圆相内切,阴影部分的面积为【   】

A.          B.-4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,Rt△ABC两直角边的边长为AC=1,BC=2.
(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为s,你认为能否确定s的最大值?若能,请你求出s的最大值;若不能,请你说明不能确定s的最大值的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,以点(-3,4)为圆心,4为半径的圆
A.与轴相交,与轴相切B.与轴相离,与轴相交
C.与轴相切,与轴相交D.与轴相切,与轴相离

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011湖南衡阳,24,8分)如图,△ABC内接于⊙OCA=CBCDAB且与OA的延长线交与点D
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011•淮安)在半径为6cm的圆中,60°的圆心角所对的弧长等于_________

查看答案和解析>>

同步练习册答案