Èôx1¡¢x2ÊǹØÓÚÒ»Ôª¶þ´Î·½³Ìax2£«bx£«c(a¡Ù0)µÄÁ½¸ö¸ù£¬Ôò·½³ÌµÄÁ½¸ö¸ùx1¡¢x2ºÍϵÊýa¡¢b¡¢cÓÐÈçϹØϵ£ºx1£«x2£½£¬x1•x2£½£®°ÑËü³ÆΪһԪ¶þ´Î·½³Ì¸ùÓëϵÊý¹Øϵ¶¨Àí£®Èç¹ûÉè¶þ´Îº¯Êýy£½ax2£«bx£«c(a¡Ù0)µÄͼÏóÓëxÖáµÄÁ½¸ö½»µãΪA(x1£¬0)£¬B(x2£¬0)£®ÀûÓøùÓëϵÊý¹Øϵ¶¨Àí¿ÉÒԵõ½A¡¢BÁ¬¸ö½»µã¼äµÄ¾àÀëΪ£ºAB£½|x1£­x2|£½

¡£

²Î¿¼ÒÔÉ϶¨ÀíºÍ½áÂÛ£¬½â´ðÏÂÁÐÎÊÌ⣺

Éè¶þ´Îº¯Êýy£½ax2£«bx£«c(a£¾0)µÄͼÏóÓëxÖáµÄÁ½¸ö½»µãA(x1£¬0)£¬B(x2£¬0)£¬Å×ÎïÏߵĶ¥µãΪC£¬ÏÔÈ»¡÷ABCΪµÈÑüÈý½ÇÐΣ®

(1)µ±¡÷ABCΪֱ½ÇÈý½ÇÐÎʱ£¬Çób2£­4acµÄÖµ£»

(2)µ±¡÷ABCΪµÈ±ßÈý½ÇÐÎʱ£¬Çób2£­4acµÄÖµ£®

 

¡¾´ð°¸¡¿

£¨1£©4£¨2£©12

¡¾½âÎö¡¿½â£º£¨1£©µ±¡÷ABCΪֱ½ÇÈý½ÇÐÎʱ£¬

¹ýC×÷CE¡ÍABÓÚE£¬

ÔòAB£½2CE¡£

¡ßÅ×ÎïÏßÓëxÖáÓÐÁ½¸ö½»µã£¬¡÷£½b2£­4ac£¾0£¬

Ôò|b2£­4ac|£½b2£­4ac¡£

¡ßa£¾0£¬¡àAB¡£

ÓÖ¡ßCE£¬¡à¡£

¡à£¬¼´¡£

¡ßb2£­4ac£¾0£¬¡àb2£­4ac£½4¡£

£¨2£©µ±¡÷ABCΪµÈ±ßÈý½ÇÐÎʱ£¬ÓÉ(1)¿ÉÖªCE£½AB£¬

¡à¡£

¡ßb2£­4ac£¾0£¬¡àb2£­4ac£½12¡£

£¨1£©µ±¡÷ABCΪֱ½ÇÈý½ÇÐÎʱ£¬ÓÉÓÚAC£½BC£¬ËùÒÔ¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¹ýC×÷CE¡ÍABÓÚE£¬ÔòAB£½2CE£®¸ù¾Ý±¾ÌⶨÀíºÍ½áÂÛ£¬µÃµ½AB£¬¸ù¾Ý¶¥µã×ø±ê¹«Ê½£¬µÃµ½CE£¬Áгö·½³Ì£¬½â·½³Ì¼´¿ÉÇó³öb2£­4acµÄÖµ¡£

£¨2£©µ±¡÷ABCΪµÈ±ßÈý½ÇÐÎʱ£¬½âÖ±½Ç¡÷ACE£¬µÃCE£½AB£¬¾Ý´ËÁгö·½³Ì£¬½â·½³Ì¼´¿ÉÇó³öb2£­4acµÄÖµ¡£

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Àí£ºÈôx1¡¢x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+n=0µÄÁ½Êµ¸ù£¬ÔòÓÐx1+x2=-m£¬x1x2=n£®ÇëÓÃÕâÒ»¶¨Àí½â¾öÎÊÌ⣺ÒÑÖªx1¡¢x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-2£¨k+1£©x+k2+2=0µÄÁ½Êµ¸ù£¬ÇÒ£¨x1+1£©£¨x2+1£©=8£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•À¼ÖÝһģ£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ö¸ù£¬Ôò·½³ÌµÄÁ½¸ö¸ùx1£¬x2ºÍϵÊýa£¬b£¬cÓÐÈçϹØϵ£ºx1+x2=-
b
a
£¬x1•x2=
c
a
£¬°ÑËüÃdzÆΪһԪ¶þ´Î·½³Ì¸ùÓëϵÊý¹Øϵ¶¨Àí£¬ÇëÀûÓô˶¨Àí½â´ðÒ»ÏÂÎÊÌ⣺
ÒÑÖªx1£¬x2ÊÇÒ»Ô±¶þ´Î·½³Ì£¨m-3£©x2+2mx+m=0µÄÁ½¸öʵÊý¸ù£®
£¨1£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹-x1+x1x2=4+x2³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬ÇëÄã˵Ã÷ÀíÓÉ£»
£¨2£©Èô|x1-x2|=
3
£¬ÇómµÄÖµºÍ´Ëʱ·½³ÌµÄÁ½¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪx1=-2£¬x2=-
4
3
£¬x1+x2=-
10
3
£¬x1x2=
8
3
£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=
-
3
2
-
3
2
£¬x2=
1
1
£¬x1+x2=
-
1
2
-
1
2
£¬x1x2=
-
3
2
-
3
2
£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=
-
b
a
-
b
a
£¬x1x2=
c
a
c
a
£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2010Äê±±¾©ÊдóÐËÇøÖп¼ÊýѧһģÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨2010•´óÐËÇøһģ£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ö¸ù£¬Ôò·½³ÌµÄÁ½¸ö¸ùx1£¬x2ºÍϵÊýa£¬b£¬cÓÐÈçϹØϵ£º£®ÎÒÃÇ°ÑËüÃdzÆΪ¸ùÓëϵÊý¹Øϵ¶¨Àí£®
Èç¹ûÉè¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëxÖáµÄÁ½¸ö½»µãΪA£¨x1£¬0£©£¬B£¨x2£¬0£©£®ÀûÓøùÓëϵÊý¹Øϵ¶¨ÀíÎÒÃÇÓÖ¿ÉÒԵõ½A¡¢BÁ½¸ö½»µã¼äµÄ¾àÀëΪ£º
AB=|x1-x2|====
ÇëÄã²Î¿¼ÒÔÉ϶¨ÀíºÍ½áÂÛ£¬½â´ðÏÂÁÐÎÊÌ⣺
Éè¶þ´Îº¯Êýy=ax2+bx+c£¨a£¾0£©µÄͼÏóÓëxÖáµÄÁ½¸ö½»µãΪA£¨x1£¬0£©£¬B£¨x2£¬0£©£¬Å×ÎïÏߵĶ¥µãΪC£¬ÏÔÈ»¡÷ABCΪµÈÑüÈý½ÇÐΣ®
£¨1£©µ±¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬Çób2-4acµÄÖµ£»
£¨2£©µ±¡÷ABCΪµÈ±ßÈý½ÇÐÎʱ£¬b2-4ac=______£»
£¨3£©ÉèÅ×ÎïÏßy=x2+kx+1ÓëxÖáµÄÁ½¸ö½»µãΪA¡¢B£¬¶¥µãΪC£¬ÇÒ¡ÏACB=90°£¬ÊÔÎÊÈçºÎƽÒÆ´ËÅ×ÎïÏߣ¬²ÅÄÜʹ¡ÏACB=60°£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012-2013ѧÄ긣½¨Ê¡ÕÄÖÝÊÐƽºÍÏؾÅÄ꼶£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪ£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=______£¬x2=______£¬x1+x2=______£¬x1x2=______£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=______£¬x1x2=______£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸