精英家教网 > 初中数学 > 题目详情
已知直角三角形两直角边的和是14cm,面积是24cm2
(1)求两直角边的长.
(2)求斜边上的高.
分析:(1)设其中一条直角边长为未知数,表示出另一直角边长,根据面积为24列式求值即可.
(2)利用面积法求斜边上的高.
解答:解:(1)设其中一条直角边长为xcm,则另一直角边长为(14-x)cm,
1
2
×x(14-x)=24,
解得x1=6,x2=8,
当x1=6时,14-x=8;
当x2=8时,14-x=6;
所以,两条直角边的长分别为6,8.
答:两条直角边的长分别为6,8.

(2)设斜边上的高线为h.
由(1)知,该直角三角形的两直角边为6和8,则根据勾股定理得到斜边的长度为:
62+82
=10(cm).
1
2
×6×8=
1
2
×10h,
解得,h=4.8(cm).
答:斜边上的高是4.8cm.
点评:本题考查了勾股定理,三角形的面积计算,一元一次方程的应用.注意,勾股定理应用于直角三角形中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直角三角形两直角边的长分别为6cm和8cm,则斜边上的中线长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角三角形两直角边的边长之和为
6
,斜边长为2,则这个三角形的面积是(  )
A、
1
4
B、
1
2
C、1
D、2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角三角形两直角边的边长之和为
6
,斜边长为2,则这个三角形的面积是(  )
A、0.25
B、0.5
C、1
D、2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角三角形两直角边分别为3和4,则该直角三角形内切圆的半径是
1
1

查看答案和解析>>

同步练习册答案