【题目】如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是( )m.
A.20B.30C.30D.40
科目:初中数学 来源: 题型:
【题目】数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.
(1)求小明从点A到点D的过程中,他上升的高度;
(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把函数的图象绕点旋转,得到新函数的图象,我们称是关于点的相关函数.的图象的对称轴与轴交点坐标为.
(1)填空:的值为 (用含的代数式表示)
(2)若,当时,函数的最大值为,最小值为,且,求的解析式;
(3)当时,的图象与轴相交于两点(点在点的右侧).与轴相交于点.把线段原点逆时针旋转,得到它的对应线段,若线与的图象有公共点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与轴,轴分别交于点,抛物线的顶点是,且与轴交于两点,与轴交于点是抛物线上一个动点,过点作于点.
求二次函数的解析式;
当点运动到何处时,线段PG的长取最小值?最小值为多少?
若点是抛物线对称轴上任意点,点是抛物线上一动点,是否存在点使得以点为顶点的四边形是菱形?若存在,请你直接写出点的坐标;若不存在,请你说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.
(1)求两个路灯之间的距离;
(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂有甲种原料,乙种原料,现用两种原料生产处两种产品共件,已知生产每件产品需甲种原料,乙种原料,且每件产品可获得元;生产每件产品甲种原料,乙种原料,且每件产品可获利润元,设生产产品 件(产品件数为整数件),根据以上信息解答下列问题:
(1)生产两种产品的方案有哪几种?
(2)设生产这件产品可获利元,写出关于的函数解析式,写出(1)中利润最大的方案,并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将大小相同的正三角形按如图所示的规律拼图案,其中第①个图案中有6个小三角形和1个正六边形;第②个图案中有10个小三角形和2个正六边形;第③个图案中有14个小三角形和3个正六边形;…;按此规律排列下去,已知一个正六边形的面积为,一个小三角形的面积为,则第③个图案中所有的小三角形和正六边形的面积之和为______.(结果用含、的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁,
(I)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A'C'的位置时,A'C'的长为 .
(II)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com