精英家教网 > 初中数学 > 题目详情
已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为( )

A.
B.
C.2
D.3
【答案】分析:根据切线长定理先证明∠ACB=90°,得直角三角形ABC;再由tan∠ABC==,得两圆弦长的比;进一步求半径的比.
解答:解:如图,连接O2B,O1A,过点C作两圆的公切线CF,交于AB于点F,作O1E⊥AC,O2D⊥BC,
由垂径定理可证得点E,点D分别是AC,BC的中点,
由弦切角定理知,
∠ABC=∠FCB=∠BO2C,∠BAC=∠FCA=∠AO1C,
∵AO1∥O2B,
∴∠AO1C+∠BO2C=180°,
∴∠FCB+∠FCA=∠ACB=90°,
即△ACB是直角三角形,
∴∠ABC=∠BO2D=∠ACO1
设∠ABC=∠BO2D=∠ACO1=β,
则有sinβ=,cosβ=
∴tanβ==
∴(tanβ)2==2.
故选C.
点评:本题综合性较强,综合了圆的有关知识,所以学生所学的知识要系统起来,不可单一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知;如图,⊙O1与⊙O2内切于点A,⊙O2的直径AC交⊙O1于点B,⊙O2的弦FC切⊙精英家教网O1于点D,AD的延长线交⊙O2于点E,连接AF、EF、BD.
(1)求证:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=
2
,则
R
r
的值为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知,如图,⊙O1与⊙O2相交,点P是其中一个交点,点A在⊙O2上,AP的延长线交⊙O1于点B,AO2的延长线交⊙O1于点C、D,交⊙O2于点E,连接PC、PE、PD,且
PC
PD
=
CE
DE
,过A作⊙O1的切线AQ,切点为Q.求证:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2相交于A、B,若两圆半径分别为12和5,O1O2=13,则AB=
120
13
120
13

查看答案和解析>>

同步练习册答案