精英家教网 > 初中数学 > 题目详情

如图,△ABC中,D、E、F分别为BC、AC、AB的中点,AD、BE、CF相交于点O,DE=3,BC=10,DF=4.
(1)试求出线段OA的长度.
(2)试判断四边形AEDF是何种特殊四边形,并加以说明.

解:∵D、E、F分别为BC、AC、AB的中点,
∴DE,DF,是△ABC的中位线,
∴DE=AB,DF=AC,
∵DE=3,DF=4,
∴AB=6,AC=8,
∴BC=10,
∴△ABC是直角三角形,
∴AD=BC=5,
∴OA=AD=

(2)矩形,
理由如下:
有(1)知:△ABC是直角三角形,
∴∠BAC=90°,
∵DE∥AB,DF∥AC,
∴∠AED=90°,∠AFD=90°,
∴四边形AEDF是矩形.
分析:(1)易得DE是△ABC的中位线,那么DE等于AB的一半;可证得△ABC是直角三角形,那么AD等于BC的一半;AO等于AD的三分之二;
(2)根据有三个直角的四边形为矩形,进行判定即可.
点评:本题考查的知识点为:三角形的中位线等于第三边的一半;直角三角形斜边上的中线等于斜边的一半;三角形的重心把三角形的中线分为1:2两部分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案