【题目】如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.
(1)求证:AM是⊙O的切线;
(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).
【答案】
(1)
解:∵∠B=60°,
∴△BOC是等边三角形,
∴∠1=∠2=60°,
∵OC平分∠AOB,
∴∠1=∠3,
∴∠2=∠3,
∴OA∥BD,
∴∠BDM=90°,∴∠OAM=90°,
∴AM是⊙O的切线
(2)
解:∵∠3=60°,OA=OC,
∴△AOC是等边三角形,
∴∠OAC=60°,
∵∠OAM=90°,
∴∠CAD=30°,
∵CD=2,
∴AC=2CD=4,
∴AD=2 ,
∴S阴影=S梯形OADC﹣S扇形OAC= (4+2)×2 ﹣ =6 ﹣
【解析】(1)由已知条件得到△BOC是等边三角形,根据等边三角形的性质得到∠1=∠2=60°,由角平分线的性质得到∠1=∠3,根据平行线的性质得到∠OAM=90°,于是得到结论;(2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2 ,于是得到结论.
科目:初中数学 来源: 题型:
【题目】写出下列命题的已知、求证,并完成证明过程.
(1)命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).
已知:如图, .
求证: .
(2)证明命题
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论: ①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣ ,0);⑤am2+bm+a≥0,其中所有正确的结论是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:
(1)单摆的长度( ≈1.7);
(2)从点A摆动到点B经过的路径长(π≈3.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017赤峰)已知平行四边形ABCD.
(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:CE=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例函数y=﹣ 的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日销售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,椭圆 的右顶点和上顶点分别为点A,B,M是线段AB的中点,且 ..
(1)求椭圆的离心率;
(2)若a=2,四边形ABCD内接于椭圆,AB∥CD,记直线AD,BC的斜率分别为k1 , k2 , 求证:k1k2为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“任意画一个三角形,其内角和是360°”是随机事件
B.“明天的降水概率为80%”,意味着明天降雨的可能性较大
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会中奖
D.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com