【题目】如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:
(1)当t为何值时,△BDE的面积为7.5cm2;
(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.
【答案】(1)t为5秒时,△BDE的面积为7.5cm2;(2)存在时间t为或秒时,使得△BDE与△ABC相似.
【解析】
(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;
(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.
解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G
如图
∴DF∥AG,=
∵AB=AC=10,BC=16∴BG=8,∴AG=6.
∵AD=BE=t,∴BD=10﹣t,
∴=
解得DF=(10﹣t)
∵S△BDE=BEDF=7.5
∴(10﹣t)t=15
解得t=5.
答:t为5秒时,△BDE的面积为7.5cm2.
(2)存在.理由如下:
①当BE=DE时,△BDE与△BCA,
∴=即=,
解得t=,
②当BD=DE时,△BDE与△BAC,
=即=,
解得t=.
答:存在时间/span>t为或秒时,使得△BDE与△ABC相似.
科目:初中数学 来源: 题型:
【题目】小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:
x(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);
(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与直线x=2相交于点A,将抛物线y=x2沿线段OA从点O运动到点A,使其顶点始终在线段OA上,抛物线与直线x=2相交于点P,则点P移动的路径长为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是.
(1)求口袋里红球的个数;
(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B分别在反比例函数y= (k1>0) 和 y= (k2<0)的图象上,连接AB交y轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线y=ax2+bx﹣3的对称轴为直线x=1,且该抛物线经过点(3,0).
(1)求该抛物线对应的函数表达式.
(2)当﹣2≤x≤2时,则函数值y的取值范围为 .
(3)若方程ax2+bx﹣3=n有实数根,则n的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是( )
A.B.2≤OP≤4C.≤OP≤D.3≤OP≤4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知AB⊥l,DE⊥l,垂足分别为B、E,且C是l上一点,∠ACD=90°,求证:△ABC∽△CED;
(2)如图2,在四边形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)抛物线y=ax2﹣2x+2经过点E(2,2),其顶点为C点.
①求抛物线的解析式,并直接写出C点坐标;
②将直线y=x沿y轴向上平移b(b>0)个单位长度交抛物线于A、B两点,若∠ACB=90°,求b的值.
(2)是否存在点D(1,m),使抛物线y=x2﹣x+上任意一点P到x轴的距离等于P点到点D的距离,若存在,请求点D的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com