精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为

【答案】2或2 或4
【解析】解:如图,连接AC.

∵BC∥AD,∠DCB=120°,

∴∠D+∠DCB=180°,

∴∠D=60°,

∵DC=DA,

∴△ACD是等边三角形,

∴∠DAC=60°,

∵AB⊥BC,

∴∠CBA=∠BAD=90°,

∴∠BAC=30°,

∴当P3与A重合时,∠BP3C=30°,此时CP3=4,

作CP2⊥AD于P2,则四边形BCP2A是矩形,

易知∠CP2B=30°,此时CP2=2

当CB=CP1时,∠CP1B=∠CBP1=30°,此时CP1=2,

综上所述,CP的长为2或2 或4.

所以答案是2或2 或4.

【考点精析】本题主要考查了含30度角的直角三角形和勾股定理的概念的相关知识点,需要掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:

(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)

(2)(﹣4)2010×(﹣0.25)2009+(﹣12)×(+

(3)13°16'×5﹣19°12'÷6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列式子中正确的是( )
A.( 2=﹣9
B.(﹣2)3=﹣6
C. =﹣2
D.(﹣3)0=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣4x﹣m2=0
(1)求证:该方程有两个不等的实根;
(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,则BF=( )

A.1
B.3﹣
C. ﹣1
D.4﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一下正方形.

1)请你用两种不同的方法求图2中阴影部分的面积?

       

2)观察图2,写出三个代数式(m+n2,(mn24mn之间的等量关系: 

3)根据(2)中的等量关系,解决如下问题:若|a+b7|+|ab6|0,求(ab2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一张边长为的正方形硬纸板,把它的四个角都剪去一个边长为工(为正整数)的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为,请回答下列问题:

1)用含有的代数式表示,则

2)完成下表:

1

2

3

4

5

6

7

3)观察上表,当取什么值时,容积的值最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,定义直线 与双曲线 的交点 (m、n为正整数)为 “双曲格点”,双曲线 在第一象限内的部分沿着竖直方向平移或以平行于 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.

(1)①“双曲格点” 的坐标为
②若线段 的长为1个单位长度,则n=
(2)图中的曲线 是双曲线 的一条“派生曲线”,且经过点 ,则 的解析式为 y=
(3)画出双曲线 的“派生曲线”g(g与双曲线 不重合),使其经过“双曲格点”

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠E∠F90°∠B∠CAEAF.有以下结论:①EMFN②CDDN③∠FAN∠EAM④△ACN≌△ABM.其中正确的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案