精英家教网 > 初中数学 > 题目详情
13.△ABC中∠A,∠B,∠C的对边分别是a,b,c,下列命题中的假命题是(  )
A.如果∠C-∠B=∠A,则△ABC是直角三角形
B.如果c2=b2-a2,则△ABC是直角三角形,且∠C=90°
C.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
D.如果(c+a)(c-a)=b2,则△ABC是直角三角形

分析 直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.

解答 解:A、根据三角形内角和定理,可求出角C为90度,故正确;
B、解得应为∠B=90度,故错误;
C、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.
D、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;
故选B.

点评 考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,直线y=-$\frac{3}{4}$x+6分别与x轴、y轴交于A、B两点,直线y=$\frac{5}{4}$x与AB交于点C,与过点A且平行于y轴的直线交于点D,点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为ts(t>0).
(1)求点C的坐标;
(2)当0<t<5时,求S的最大值;
(3)当t在何范围时,点(4,$\frac{17}{4}$)被正方形PQMN覆盖?请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4)
(1)求直线BD和抛物线对应的函数解析式;
(2)在抛物线对称轴上求一点P的坐标,使△ABP的周长最小;
(3)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M,O,N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在?ABCD中,∠A:∠B:∠C:∠D的值可以是(  )
A.1:2:2:1B.1:2:3:4C.2:1:1:2D.2:1:2:1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:($\sqrt{5}$-2)2014($\sqrt{5}$+2)2015-2|-$\frac{\sqrt{5}}{2}$|-(1-$\sqrt{2}$)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG且EG⊥CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是(  )
A.同角的余角相等B.对顶角相等C.同角的补角相等D.等角的补角相等

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:180°-23°13′6″=156°46′54″;62.4°=62°24′.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,正方形ABCD中,AB=6,点E在边AB上,且BE=2AE.将△ADE沿ED对折至△FDE,延长EF交边BC于点G,连结DG,BF.下列结论:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正确的结论是①②③(填写序号)

查看答案和解析>>

同步练习册答案