精英家教网 > 初中数学 > 题目详情

如图,中,为直角边上一点,以为圆心,

为半径的圆恰好与斜边相切于点,与交于另一点

1.求证:

2.若,求圆O的半径及图中阴影部分的面积

 

【答案】

 

1.切⊙O于中,

(4分)

2.设半径为,在中,

解得由(1)有

解得.(10分)

【解析】(1)要求证△AOC≌△AOD,已经满足的条件是OC=OD,AO=AO,根据HL定理就可以证出结论.

(2)求中阴影部分的面积,可以转化为△ABC的面积减去半圆的面积.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的直角边BC为直径画半圆,交斜边AB于D,若AC=
2
3
3
,BD=
3
,求图中阴影部分面积(π取3.14,
3
取1.73,结果精到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于点D,E是BC边的中点,连接DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-6x+8=0的两个根,求直角边BC的长;
(3)在(2)的条件下,则图中阴影部分的面积=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,Rt△ABC两直角边的边长为AC=1,BC=2.
(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在Rt△AOB中,∠AOB=90°,AB=5,cosA=
35
.一动点P从点O出发,以每秒1个单位长度的速度沿OB方向匀速运动;另一动点Q从点B出发,以每秒1个单位长度的速度沿BO方向匀速运动.两动点同时出发,当第一次相遇时即停止运动.在点P、Q运动的过程中,以PQ为一边作正方形PQMN,使正方形PQMN和△AOB在线段OB的同侧.设运动时间为t(单位:秒).

(1)求OA和OB的长度;
(2)在点P、Q运动的过程中,设正方形PQMN和△AOB重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)如图②,现以△AOB的直角边OB为x轴,顶点O为原点建立平面直角坐标系xOy.取OB的中点C,将过点A、C、B的抛物线记为抛物线T.
①求抛物线T的函数解析式;
②设抛物线T的顶点为点D.在点P、Q运动的过程中,设正方形PQMN的对角线PM、QN交于点E,连接DE、DN.是否存在这样的t,使得△DEN是以EN、DE为两腰或以EN、DN为两腰的等腰三角形?若存在,请求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①△ABC中,D为BC边的中点,连接AD并延长AD至E,使DE=AD,连接BE.
(1)若△ABC中,AB=7,AC=5,则中线AD的长度的取值范围是什么?并说明理由;
(2)△ADC经过怎样的图形变换得到△BDE?
(3)利用(2)中变换的特点,把如图②的△PQR剪2刀后拼成一个长方形,把如图③的正方形ABCD剪1刀拼成一个直角三角形(但非等腰三角形),画出裁剪线及拼成的图形,作出必要的说明.

查看答案和解析>>

同步练习册答案